Generalization and refinement of the integro-local Stone theorem for sums of random vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 659-685

Voir la notice de l'article provenant de la source Math-Net.Ru

The integro-local Stone theorem on the asymptotics of the probability that a sum of random vectors enters a small cube is (a) refined under additional moment and structural conditions; (b) generalized to a case of nonidentically distributed summands in the triangular array scheme; (c) the results of item (b) are refined under additional moment and structural conditions.
Keywords: integro-local Stone theorem, sums of random vectors, bound for the remainder term, triangular array scheme.
@article{TVP_2016_61_4_a2,
     author = {A. A. Borovkov},
     title = {Generalization and refinement of the integro-local {Stone} theorem for sums of random vectors},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {659--685},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a2/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Generalization and refinement of the integro-local Stone theorem for sums of random vectors
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 659
EP  - 685
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a2/
LA  - ru
ID  - TVP_2016_61_4_a2
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Generalization and refinement of the integro-local Stone theorem for sums of random vectors
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 659-685
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a2/
%G ru
%F TVP_2016_61_4_a2
A. A. Borovkov. Generalization and refinement of the integro-local Stone theorem for sums of random vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 659-685. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a2/