Generalization and refinement of the integro-local Stone theorem for sums of random vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 659-685 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The integro-local Stone theorem on the asymptotics of the probability that a sum of random vectors enters a small cube is (a) refined under additional moment and structural conditions; (b) generalized to a case of nonidentically distributed summands in the triangular array scheme; (c) the results of item (b) are refined under additional moment and structural conditions.
Keywords: integro-local Stone theorem, sums of random vectors, bound for the remainder term, triangular array scheme.
@article{TVP_2016_61_4_a2,
     author = {A. A. Borovkov},
     title = {Generalization and refinement of the integro-local {Stone} theorem for sums of random vectors},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {659--685},
     year = {2016},
     volume = {61},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a2/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Generalization and refinement of the integro-local Stone theorem for sums of random vectors
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 659
EP  - 685
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a2/
LA  - ru
ID  - TVP_2016_61_4_a2
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Generalization and refinement of the integro-local Stone theorem for sums of random vectors
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 659-685
%V 61
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a2/
%G ru
%F TVP_2016_61_4_a2
A. A. Borovkov. Generalization and refinement of the integro-local Stone theorem for sums of random vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 659-685. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a2/

[1] Stone C., “A local limit theorem for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36 (1965), 546–551 | DOI | MR | Zbl

[2] Stone C., “On local and ratio limit theorems”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,, v. II, part II, Berkeley, Univ.of California, Los Angeles, 1967, 217–224 | MR | Zbl

[3] Borovkov A. A., Teoriya veroyatnostei, URSS, Knizhnyi dom LIBROKOM, M., 2009, 652 pp.

[4] Borovkov A. A., “O raspredelenii vremeni pervogo prokhozhdeniya sluchainym bluzhdaniem proizvolnoi udalennoi granitsy”, Teoriya veroyatn. i ee primen., 61:2 (2016), 210–234 | DOI

[5] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M., 1949, 264 pp.

[6] Rvacheva E. L., “On domain of attraction of multidimensional distributions”, Select Transl. Math. Statist. Probab., 2 (1962), 183–205 | MR

[7] Prokhorov Yu. V., “O lokalnoi predelnoi teoreme dlya reshetchatykh raspredelenii”, Dokl. AN SSSR, 98:4 (1954), 535–538 | Zbl

[8] Rozanov Yu. A., “O lokalnoi predelnoi teoreme dlya reshetchatykh raspredelenii”, Teoriya veroyatn. i ee primen., 2:2 (1957), 275–280

[9] Mitalauskas A., “O mnogomernoi predelnoi teoreme dlya reshetchatykh raspredelenii”, Tr. Lit. SSR, Ser. B, 2:22 (1960), 3–14

[10] Raudelyunas A. O., “O mnogomernoi lokalnoi predelnoi teoreme”, Lit. matem. sb., 4:1 (1964), 141–145

[11] Gamkrelidze N. G., “O lokalnoi predelnoi teoreme dlya tselochislennykh sluchainykh vektorov”, Teoriya veroyatn. i ee primen., 59:3 (2014), 579–585 | DOI

[12] Shepp L. A., “A local limit theorem”, Ann. Math. Statist., 35 (1964), 419–423 | DOI | MR | Zbl

[13] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. I, II”, Teoriya veroyatn. i ee primen., 43:1 (1998), 3–17 ; 45:1 (2000), 5–19 | DOI | Zbl

[14] Borovkov A. A., “Integro-lokalnye i lokalnye teoremy o normalnykh i bolshikh ukloneniyakh summ raznoraspredelennykh sluchainykh velichin v skheme serii”, Teoriya veroyatn. i ee primen., 54:4 (2009), 625–644 | DOI

[15] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.

[16] Bkhattachariya R. N., Rao R. Ranga, Approksimatsiya normalnym raspredeleniem i asimptoticheskie razlozheniya, Nauka, M., 1982, 286 pp.