On mini-max optimality of CUSUM statistics in change point detection problem for Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 837-844 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The CUSUM (CUmulative SUM) statistic is a natural generalization of the likelihood ratio. It was observed long ago that this statistic has many remarkable properties, which are useful in empirical analysis of statistical data. In this paper, we consider Lorden's minimax criterion in problems of the quickest detection of disorder, which represents the value of the drift of Brownian motion changes at an unknown and unobservable moment of time. We provide the proof of the optimality for this minimax criterion.
Keywords: disorder, minimax criterion, two-sided inequalities for minimax risk, probabilistic characteristics
Mots-clés : Itô formula.
@article{TVP_2016_61_4_a10,
     author = {A. N. Shiryaev},
     title = {On mini-max optimality of {CUSUM} statistics in change point detection problem for {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {837--844},
     year = {2016},
     volume = {61},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a10/}
}
TY  - JOUR
AU  - A. N. Shiryaev
TI  - On mini-max optimality of CUSUM statistics in change point detection problem for Brownian motion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 837
EP  - 844
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a10/
LA  - ru
ID  - TVP_2016_61_4_a10
ER  - 
%0 Journal Article
%A A. N. Shiryaev
%T On mini-max optimality of CUSUM statistics in change point detection problem for Brownian motion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 837-844
%V 61
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a10/
%G ru
%F TVP_2016_61_4_a10
A. N. Shiryaev. On mini-max optimality of CUSUM statistics in change point detection problem for Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 837-844. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a10/

[1] Beibel M., “A note on Ritov's Bayes approach to the minimax property of the CUSUM procedures”, Ann. Statist., 24:4 (1996), 1804–1812 | DOI | MR | Zbl

[2] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov. Nelineinaya filtratsiya i smezhnye voprosy., Nauka, M., 1974, 696 pp.

[3] Lorden G., “Procedures for reacting to a change in distribution”, Ann. Math. Statist., 42:6 (1971), 1897–1908 | DOI | MR | Zbl

[4] Moustakides G. V., “Optimal stopping times for detecting changes in distributions”, Ann. Statist., 14:4 (1986), 1379–1387 | DOI | MR | Zbl

[5] Moustakides G. V., “Optimality of the CUSUM procedures in continuous time”, Ann. Statist., 32:1 (2004), 302–315 | DOI | MR | Zbl

[6] Nikiforov I. V., Posledovatelnoe obnaruzhenie izmeneniya svoistv vremennykh ryadov, Nauka, M., 1983, 199 pp.

[7] Page E. S., “Continuous inspection schemes”, Biometrika, 41:1–2 (1954), 100–115 | DOI | MR | Zbl

[8] Poor H. V., Hadjiliadis O., Quickest Detection, Cambridge Univ. Press, Cambridge, 2009, 229 pp. | MR | Zbl

[9] Skorokhod A. V., Selected Works, Springer, Cham, 2016, 390 pp. | Zbl

[10] Shiryaev A. N., “Minimaksnaya optimalnost metoda kumulyativnykh summ (CUSUM) v sluchae nepreryvnogo vremeni”, Uspekhi matem. nauk, 51:4 (1996), 173–174 | DOI

[11] Shiryaev A. N., Veroyatnost-1, MTsNMO, M., 2007, 551 pp.

[12] Shiryaev A. N., Veroyatnostno-statisticheskie metody v teorii prinyatiya reshenii, MTsNMO, M., 2011, 144 pp.