Mots-clés : fractional Gaussian noise
@article{TVP_2016_61_4_a1,
author = {F. Aurzada and M. A. Lifshits},
title = {Small deviations of sums of correlated stationary {Gaussian} sequences},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {626--658},
year = {2016},
volume = {61},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a1/}
}
F. Aurzada; M. A. Lifshits. Small deviations of sums of correlated stationary Gaussian sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 626-658. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a1/
[1] Aurzada F., Lifshits M., “Small deviation probability via chaining”, Stoch. Process. Appl., 118:12 (2008), 2344–2368 | DOI | MR | Zbl
[2] Böttcher A., Silbermann B., “Toeplitz determinants”, Analysis of Toeplitz Operators, Springer, Berlin, 1990, 429–486 | DOI | MR
[3] Borell Ch., “Convex measures on locally convex spaces”, Ark. Mat., 12 (1974), 239–252 | DOI | MR | Zbl
[4] Borovkov A. A., Mogulskii A. A., “O veroyatnostyakh malykh uklonenii dlya sluchainykh protsessov”, Asimptoticheskii analiz raspredelenii sluchainykh protsessov, Nauka, Novosibirsk, 1989, 147–168
[5] Brockwell P. J., Davis R. A., Time series: Theory and Methods, 2, Springer-Verlag, New York, 1991, 577 pp. | MR | Zbl
[6] Chung K. L., “On the maximum partial sums of sequences of independent random variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl
[7] Dwight H. B., Tables of Integrals and Other Mathematical Data, MacMillan, New York, 1961 | MR
[8] Gray R. M., “Toeplitz and Circulant Matrices: A Review”, Foundations and Trends in Communications and Information Theory, 2:3 (2006), 155–239 | DOI
[9] Latała R., Matlak D., Royen's proof of the Gaussian correlation inequality, arXiv: 1512.08776
[10] Ledoux M., “Isoperimetry and Gaussian analysis”, Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1648, Springer, 1996, 165–294 | DOI | MR | Zbl
[11] Li W. V., Linde W., “Existence of small ball constants for fractional Brownian motions”, C. R. Acad. Sci. Paris, Sér. I Math., 326:11 (1998), 1329–1334 | DOI | MR | Zbl
[12] Li W. V., Shao Q.-M., “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic Processes: Theory and Methods, North-Holland, Amsterdam, 2001, 533–597 | MR | Zbl
[13] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995, 246 pp.
[14] Lifshits M. A., 2016 http://www.proba.jussieu.fr/pageperso/smalldev/biblio.html
[15] Mogulskii A. A., “Malye ukloneniya v prostranstve traektorii”, Teoriya veroyatn.i ee primen., 19 (1974), 755–765
[16] Pakshirajan R. P., “On the maximum partial sums of sequences of independent random variables”, Teoriya veroyatn. i ee primen., 4:2 (1959), 398–404 | MR | Zbl
[17] Royen T., “A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions”, Far East J.Theor.Stat., 48 (2014), 139–145 | MR | Zbl
[18] Samorodnitsky G., “Long range dependence”, Foundations and Trends in Stochastic Systems, 1 (2007), 163–257 | DOI | MR
[19] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 144 pp.
[20] Talagrand M., “New Gaussian estimates for enlarged balls”, Geom. Funct. Anal., 3:5 (1993), 502–526 | DOI | MR | Zbl
[21] Taqqu M. S., “Weak convergence to fractional Brownian motion and to the Rosenblatt process”, Z. Wahrschein. Verw. Geb., 31 (1975), 287–302 | DOI | MR | Zbl
[22] Whitt W., Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer, New York, 2002, 602 pp. | MR | Zbl