Small deviations of sums of correlated stationary Gaussian sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 626-658 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the small deviation probabilities (SDP) in the uniform norm for sums of stationary Gaussian sequences. For the cases of constant boundaries and boundaries tending to zero, we obtain quite general results. For the case of the boundaries tending to infinity, we focus our attention on the discrete analogues of the fractional Brownian motion (FBM). It turns out that the lower bounds for the SDP can be transferred from the well-studied FBM case to the discrete time setting under the usual assumptions that imply weak convergence, while the transfer of the corresponding upper bounds necessarily requires a deeper knowledge of the spectral structure of the underlying stationary sequence.
Keywords: fractional Brownian motion, Gaussian process, small deviation probability, stationary Gaussian sequence.
Mots-clés : fractional Gaussian noise
@article{TVP_2016_61_4_a1,
     author = {F. Aurzada and M. A. Lifshits},
     title = {Small deviations of sums of correlated stationary {Gaussian} sequences},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {626--658},
     year = {2016},
     volume = {61},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a1/}
}
TY  - JOUR
AU  - F. Aurzada
AU  - M. A. Lifshits
TI  - Small deviations of sums of correlated stationary Gaussian sequences
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 626
EP  - 658
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a1/
LA  - ru
ID  - TVP_2016_61_4_a1
ER  - 
%0 Journal Article
%A F. Aurzada
%A M. A. Lifshits
%T Small deviations of sums of correlated stationary Gaussian sequences
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 626-658
%V 61
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a1/
%G ru
%F TVP_2016_61_4_a1
F. Aurzada; M. A. Lifshits. Small deviations of sums of correlated stationary Gaussian sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 626-658. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a1/

[1] Aurzada F., Lifshits M., “Small deviation probability via chaining”, Stoch. Process. Appl., 118:12 (2008), 2344–2368 | DOI | MR | Zbl

[2] Böttcher A., Silbermann B., “Toeplitz determinants”, Analysis of Toeplitz Operators, Springer, Berlin, 1990, 429–486 | DOI | MR

[3] Borell Ch., “Convex measures on locally convex spaces”, Ark. Mat., 12 (1974), 239–252 | DOI | MR | Zbl

[4] Borovkov A. A., Mogulskii A. A., “O veroyatnostyakh malykh uklonenii dlya sluchainykh protsessov”, Asimptoticheskii analiz raspredelenii sluchainykh protsessov, Nauka, Novosibirsk, 1989, 147–168

[5] Brockwell P. J., Davis R. A., Time series: Theory and Methods, 2, Springer-Verlag, New York, 1991, 577 pp. | MR | Zbl

[6] Chung K. L., “On the maximum partial sums of sequences of independent random variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl

[7] Dwight H. B., Tables of Integrals and Other Mathematical Data, MacMillan, New York, 1961 | MR

[8] Gray R. M., “Toeplitz and Circulant Matrices: A Review”, Foundations and Trends in Communications and Information Theory, 2:3 (2006), 155–239 | DOI

[9] Latała R., Matlak D., Royen's proof of the Gaussian correlation inequality, arXiv: 1512.08776

[10] Ledoux M., “Isoperimetry and Gaussian analysis”, Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1648, Springer, 1996, 165–294 | DOI | MR | Zbl

[11] Li W. V., Linde W., “Existence of small ball constants for fractional Brownian motions”, C. R. Acad. Sci. Paris, Sér. I Math., 326:11 (1998), 1329–1334 | DOI | MR | Zbl

[12] Li W. V., Shao Q.-M., “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic Processes: Theory and Methods, North-Holland, Amsterdam, 2001, 533–597 | MR | Zbl

[13] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995, 246 pp.

[14] Lifshits M. A., 2016 http://www.proba.jussieu.fr/pageperso/smalldev/biblio.html

[15] Mogulskii A. A., “Malye ukloneniya v prostranstve traektorii”, Teoriya veroyatn.i ee primen., 19 (1974), 755–765

[16] Pakshirajan R. P., “On the maximum partial sums of sequences of independent random variables”, Teoriya veroyatn. i ee primen., 4:2 (1959), 398–404 | MR | Zbl

[17] Royen T., “A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions”, Far East J.Theor.Stat., 48 (2014), 139–145 | MR | Zbl

[18] Samorodnitsky G., “Long range dependence”, Foundations and Trends in Stochastic Systems, 1 (2007), 163–257 | DOI | MR

[19] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 144 pp.

[20] Talagrand M., “New Gaussian estimates for enlarged balls”, Geom. Funct. Anal., 3:5 (1993), 502–526 | DOI | MR | Zbl

[21] Taqqu M. S., “Weak convergence to fractional Brownian motion and to the Rosenblatt process”, Z. Wahrschein. Verw. Geb., 31 (1975), 287–302 | DOI | MR | Zbl

[22] Whitt W., Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer, New York, 2002, 602 pp. | MR | Zbl