Incremental similarity and turbulence
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 588-595 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper discusses the mathematical representation of an empirically observed phenomenon, referred to as incremental similarity. We discuss this feature from the viewpoint of stochastic processes and present a variety of nontrivial examples, including those that are relevant to turbulence modeling.
Keywords: universality, normal inverse Gaussian, ${BSS}/{LSS}$ type, trawl processes
Mots-clés : alpha-stable processes.
@article{TVP_2016_61_3_a9,
     author = {O. E. Barndorff-Nielsen and E. Hedevang and J. Schmiegel},
     title = {Incremental similarity and turbulence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {588--595},
     year = {2016},
     volume = {61},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a9/}
}
TY  - JOUR
AU  - O. E. Barndorff-Nielsen
AU  - E. Hedevang
AU  - J. Schmiegel
TI  - Incremental similarity and turbulence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 588
EP  - 595
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a9/
LA  - en
ID  - TVP_2016_61_3_a9
ER  - 
%0 Journal Article
%A O. E. Barndorff-Nielsen
%A E. Hedevang
%A J. Schmiegel
%T Incremental similarity and turbulence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 588-595
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a9/
%G en
%F TVP_2016_61_3_a9
O. E. Barndorff-Nielsen; E. Hedevang; J. Schmiegel. Incremental similarity and turbulence. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 588-595. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a9/

[1] Barndorff-Nielsen O. E., “Models for non-Gaussian variation in turbulence”, Proc. Roy. Soc. London A, 368 (1979), 501–520 | DOI | MR | Zbl

[2] Barndorff-Nielsen O. E., “Stationary infinitely divisible processes”, Brazilian J. Probab. Statist., 25 (2011), 294–322 | DOI | MR | Zbl

[3] Barndorff-Nielsen O. E., Benth F. E., Veraart A., “Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency”, Banach Centre Publications, 104 (2015), 25–60 | DOI | MR | Zbl

[4] Barndorff-Nielsen O. E., Blæsild P., Schmiegel J., “A parsimonious and universal description of turbulent velocity increments”, Eur. Phys. J. B, 41 (2004), 345–363 | DOI | MR

[5] Barndorff-Nielsen O. E., Schmiegel J., Change of time and universal laws in turbulence, Technical report, Thiele Centre, University of Aarhus, Denmark, 2007–2008

[6] Barndorff-Nielsen O. E., Schmiegel J., “Brownian semistationary processes and volatility/intermittency”, Advanced Financial Modelling, eds. Albrecher H., Rungaldier W., Schachermeyer W., de Gruyter, Berlin, 2009, 1–26 | MR

[7] Birnir B., “The Kolmogorov–Obukhov statistical theory of turbulence”, J. Nonlinear Sci., 0938-8974 (2013), 1–32 | MR

[8] Birnir B., The Kolmogorov–Obukhov Theory of Turbulence, Springer, Heidelberg, 2013 | MR | Zbl

[9] Birnir B., “The Kolmogorov–Obukhov–She-Leveque scaling in Turbulence”, Com. Pure Appl. Anal., 13 (2014), 1737–1757 | DOI | MR | Zbl

[10] Hedevang E., Schmiegel J., “A causal continuous-time stochastic model for the turbulent energy cascade in a helium jet flow”, J. Turbulence, 14:11 (2014), 1–26 | DOI | MR

[11] Márquez J. U., Schmiegel J., Modelling turbulent time series by BSS-processes. The Fascination of Probability, Statistics, and Their Applications, eds. Podolskij M., Stelzer R., Thorbjørnsen S., Veraart A. E., Springer, Heidelberg, 2015

[12] Podolskij M., “Ambit Fields: survey and new challenges”, XI Symposium on Probability and Stochastic Processes, eds. Mena R. H., Pardo J. C., Rivero V., Bravo G. U., 2014, 241–279