@article{TVP_2016_61_3_a8,
author = {M. G. Shur},
title = {Exponentials and $R$-recurrent random walks on groups},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {580--588},
year = {2016},
volume = {61},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a8/}
}
M. G. Shur. Exponentials and $R$-recurrent random walks on groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 580-588. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a8/
[1] Babillot M., “An introduction to Poisson boundaries of Lie groups”, Probability Measures on Groups: Recent Directions and Trends, eds. S. G. Dany, P. Graczyk, Narosa Publ. House, New Delhi, 2006, 1–90 | MR | Zbl
[2] Baldi P., “Caractérization des groupes de Lie connexes récurrents”, Ann. Inst. Henri Poincaré, Probab. Satist., 17 (1981), 281–308 | MR | Zbl
[3] Guivarc'h Y., Keane M., Roynette B., Marches aléatoiries sur les groupes de Lie, Lecture Notes in Math., 624, 1977, 292 pp. | DOI | MR
[4] Nummelin E., General Irreducible Markov Chains and Non-negative Operators, Cambridge Univ. Press, Cambridge, 1984, 156 pp. | MR | Zbl
[5] Tweedie R. L., “Theory for Markov chains on a general state space. I; II”, Ann. Probab., 2 (1974), 840–864 ; 865–878 | DOI | MR | Zbl | MR | Zbl
[6] Woess W., Random Walks on Infinitife Graphs and Groups, Cambridge Univ. Press, Cambridge, 2000, 334 pp. | MR
[7] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975, 654 pp.
[8] Revyuz D., Tsepi Markova, RFFI, M., 1997, 431 pp.
[9] Shur M. G., “Uslovie ravnomernoi integriruemosti v silnykh predelnykh teoremakh dlya otnoshenii, III”, Teoriya veroyatn. i ee primen., 57:4 (2012), 682–700 | DOI