Exponentials and $R$-recurrent random walks on groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 580-588

Voir la notice de l'article provenant de la source Math-Net.Ru

On a locally compact group $E$ with a countable base we consider a right random walk $X$ which for some $r>0$ has a unique (up to a positive multiplier) $r$-invariant measure. If this measure obeys some weak restrictions, then the random walk $X$ corresponds to the single continuous exponential on $E$. From this we obtain that we can implement some $R$-recurrent (by Tweedie) random walk on the group $E$ only in the case when this group is recurrent and, moreover, when there exists a Harris recurrent random walk on it.
Keywords: $r$-invariant measure, $R$-recurrent walk on a group, random walk, Harris recurrent walk, exponential.
@article{TVP_2016_61_3_a8,
     author = {M. G. Shur},
     title = {Exponentials and $R$-recurrent random walks on groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {580--588},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a8/}
}
TY  - JOUR
AU  - M. G. Shur
TI  - Exponentials and $R$-recurrent random walks on groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 580
EP  - 588
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a8/
LA  - ru
ID  - TVP_2016_61_3_a8
ER  - 
%0 Journal Article
%A M. G. Shur
%T Exponentials and $R$-recurrent random walks on groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 580-588
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a8/
%G ru
%F TVP_2016_61_3_a8
M. G. Shur. Exponentials and $R$-recurrent random walks on groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 580-588. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a8/