Stability of densities for perturbed degenerate diffusions
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 570-579 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the sensitivity of the densities of some Kolmogorov-like degenerate diffusion processes with respect to a perturbation of the coefficients of the nondegenerate component. Under suitable (quite sharp) assumptions we quantify how the perturbation of the SDE affects the density. Natural applications of these results appear in various fields from mathematical finance to kinetic models.
Mots-clés : diffusion processes, Markov chains, Hölder coefficients
Keywords: parametrix, bounded drifts.
@article{TVP_2016_61_3_a7,
     author = {A. Kozhina},
     title = {Stability of densities for perturbed degenerate diffusions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {570--579},
     year = {2016},
     volume = {61},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a7/}
}
TY  - JOUR
AU  - A. Kozhina
TI  - Stability of densities for perturbed degenerate diffusions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 570
EP  - 579
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a7/
LA  - ru
ID  - TVP_2016_61_3_a7
ER  - 
%0 Journal Article
%A A. Kozhina
%T Stability of densities for perturbed degenerate diffusions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 570-579
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a7/
%G ru
%F TVP_2016_61_3_a7
A. Kozhina. Stability of densities for perturbed degenerate diffusions. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 570-579. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a7/

[1] Kolmogorov A. N., Izbrannye trudy. Teoriya veroyatnostei i matematicheskaya statistika, v. 2, Nauka, M., 1986, 581 pp.

[2] Delarue F., Menozzi S., “Density estimates for a random noise propagating through a chain of differential equations”, J. Funct. Anal., 259:6 (2010), 1577–1630 | DOI | MR | Zbl

[3] Dynkin E. B., Markovskie protsessy, GIFML, M., 1963, 861 pp.

[4] Di Francesco M., Pascucci A., “On a class of degenerate parabolic equations of Kolmogorov type”, Appl. Math. Res. Express, 2005, no. 3, 116 | Zbl

[5] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968, 428 pp.

[6] Hérau F., Nier F., “Isotropic hypoelliptic and trend to equilibrium for the Fokker–Planck equation with a high-degree potential”, Arch. Ration. Mech. Anal., 171:2 (2004), 151–218 | DOI | MR | Zbl

[7] Hörmander L., “Hypoelliptic second order differential operators”, Acta. Math., 119 (1967), 147–171 | DOI | MR

[8] Hobson D. G., Rogers L. C. G., “Complete models with stochastic volatility”, Math. Finance, 8:1 (1998), 27–48 | DOI | MR | Zbl

[9] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi matem. nauk, 17:3(105) (1962), 3–146

[10] Konakov V., Kozhina A., Menozzi S., {S}tability of densities for perturbed diffusions and {M}arkov chains, 2015, arXiv: 1506.08758v2

[11] Konakov V., Mammen E., “Local limit theorems for transition densities of Markov chains converging to diffusions”, Probab. Theory Relat. Fields, 117:4 (2000), 551–587 | DOI | MR | Zbl

[12] Konakov V., Mammen E., “Edgeworth type expansions for Euler schemes for stochastic differential equations”, Monte Carlo Methods Appl., 8:3 (2002), 271–285 | DOI | MR | Zbl

[13] Konakov V., Menozzi S., Molchanov S., “Explicit parametrix and local limit theorems for some degenerate diffusion processes”, Ann. Inst. Henri Poincaré, Probab. Stat., 46:4 (2010), 908–923 | DOI | MR | Zbl

[14] Kolmogorov A. N., “Sluchainye dvizheniya (k teorii brounovskogo dvizheniya)”, Izbrannye trudy, v. 2, Nauka, M., 2005, 176–177

[15] Krylov N. V., Lektsii po ellipticheskim i parabolicheskim uravneniyam v prostranstve Gëldera, Nauchnaya kniga, Novosibirsk, 1998, 176 pp.

[16] Menozzi S., Lemaire V., “On some non asymptotic bounds for the Euler scheme”, Electron. J. Probab., 15 (2010), 1645–1681 | DOI | MR | Zbl

[17] Menozzi S., “Parametrix techniques and martingale problems for some degenerate Kolmogorov equations”, Electron. Comm. Probab., 17 (2011), 234–250 | DOI | MR

[18] McKean H. P., Singer I. M., “Curvature and the eigenvalues of the Laplacian”, J. Differ. Geom., 1:1 (1967), 43–69 | MR | Zbl

[19] Mattingly J., Stuart A., Higham D., “Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise”, Stoch. Proc. Appl., 101:2 (2002), 185–232 | DOI | MR | Zbl

[20] Norris J. R., “Simplified {M}alliavin calculus”, Probabilités XX, Proc. Sémin, Strasbourg 1984185, Lecture Notes Math., 1204, 1986, 101–130 | DOI | MR | Zbl

[21] Stroock D. W., Varadhan S. R. S., Multidimensional Diffusion Processes, Springer-Verlag, Berlin, 1979, 388 pp. | MR | Zbl

[22] Talay D., “Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme”, Markov Process. Relat. Fields, 8:2 (2002), 163–198 | MR | Zbl