Truncation bounds for approximations of inhomogeneous continuous-time Markov chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 563-569 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Weakly ergodic continuous-time countable Markov chains are studied. We obtain uniform in time bounds for approximations via truncations by analogous smaller chains under some natural assumptions.
Keywords: inhomogeneous continuous-time Markov processes, approximations, truncations, weak ergodicity.
@article{TVP_2016_61_3_a6,
     author = {A. I. Zeifman and A. V. Korotysheva and V. Yu. Korolev and Ya. A. Satin},
     title = {Truncation bounds for approximations of inhomogeneous continuous-time {Markov} chains},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {563--569},
     year = {2016},
     volume = {61},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a6/}
}
TY  - JOUR
AU  - A. I. Zeifman
AU  - A. V. Korotysheva
AU  - V. Yu. Korolev
AU  - Ya. A. Satin
TI  - Truncation bounds for approximations of inhomogeneous continuous-time Markov chains
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 563
EP  - 569
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a6/
LA  - ru
ID  - TVP_2016_61_3_a6
ER  - 
%0 Journal Article
%A A. I. Zeifman
%A A. V. Korotysheva
%A V. Yu. Korolev
%A Ya. A. Satin
%T Truncation bounds for approximations of inhomogeneous continuous-time Markov chains
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 563-569
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a6/
%G ru
%F TVP_2016_61_3_a6
A. I. Zeifman; A. V. Korotysheva; V. Yu. Korolev; Ya. A. Satin. Truncation bounds for approximations of inhomogeneous continuous-time Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 563-569. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a6/

[1] Chen A., Renshaw E., “The $ M/M/1$ queue with mass exodus and mass arrivals when empty”, J. Appl. Probab., 34:2 (1997), 192–207 | DOI | MR | Zbl

[2] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[3] Di Crescenzo A., Nobile A. G., “Diffusion approximation to a queueing system with time dependent arrival and service rates”, Queueing Syst., 19:1–2 (1995), 41–62 | DOI | MR | Zbl

[4] Giorno V., Nobile A. G., Spina S., “On some time non-homogeneous queueing systems with catastrophes”, Appl. Math. Comput., 245 (2014), 220–234 | MR | Zbl

[5] Granovsky B., Zeifman A., “Nonstationary queues: estimation of the rate of convergence”, Queueing Syst., 46:3–4 (2004), 369–388 | MR

[6] Knessl C., “Exact and asymptotic solutions to a PDE that arises in time-dependent queues”, Adv. Appl. Probab., 32:1 (2000), 256–283 | DOI | MR | Zbl

[7] Knessl C., Yang Y. P., “An exact solution for an $M(t)/M(t)/1$ queue with time-dependent arrivals and service”, Queuing Syst., 40:3 (2002), 233–245 | DOI | MR | Zbl

[8] Mandelbaum A., Massey W., “Strong approximations for time-dependent queues”, Math. Oper. Res., 20:1 (1995), 33–64 | DOI | MR | Zbl

[9] Masuyama H., “Error bounds for augmented truncations of discrete-time block-monotone Markov chains under geometric drift conditions”, Adv. Appl. Probab., 47:1 (2015), 83–105 | DOI | MR | Zbl

[10] Margolius B., “Periodic solution to the time-inhomogeneous multi-server poisson queue”, Oper. Res. Lett., 35:1 (2007), 125–138 | DOI | MR | Zbl

[11] Massey W., “The analysis of queues with time-varying rates for telecommunication models”, Telecomm. Syst., 21 (2002), 173–204 | DOI

[12] Massey W., Whitt W., “An analysis of the modified offered-load approximation for the nonstationary Erlang loss model”, Ann. Appl. Probab., 4:4 (1994), 1145–1160 | DOI | MR | Zbl

[13] Satin Ya. A., Zeifman A. I., Korotysheva A. V., “O skorosti skhodimosti i usecheniya dlya odnogo klassa markovskikh sistem obsluzhivaniya”, Teoriya veroyatn. i ee primen., 57:3 (2012), 611–621 | DOI | MR

[14] Tan X., Knessl C., Yang Y. P., “On finite capacity queues with time dependent arrival rates”, Stoch. Proc. Appl., 123:6 (2013), 2175–2227 | DOI | MR | Zbl

[15] Tweedie R. L., “Truncation approximations of invariant measures for Markov chains”, J. Appl. Probab., 35:3 (1998), 517–536 | DOI | MR | Zbl

[16] Zhang L., Li J., “The $M/M/c$ queue with mass exodus and mass arrivals when empty”, J. Appl. Probab., 52:4 (2015), 990–1002 | DOI | MR | Zbl

[17] Zeifman A. I., “Stability for contionuous-time nonhomogeneous Markov chains”, Lecture Note Math., 1155, 1985, 401–414 | DOI | MR | Zbl

[18] Zeifman A. I., “O pogreshnosti usecheniya sistemy rozhdeniya i gibeli”, Zh. vychisl. matem. i matem. fiz., 28:12 (1988), 1906–1907

[19] Zeifman A. I., “Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes”, Stochastic Processes, 59:1 (1995), 157–173 | DOI | MR | Zbl

[20] Zeifman A., Leorato S., Orsingher E., Satin Ya., Shilova G., “Some universal limits for nonhomogeneous birth and death processes”, Queueing Syst., 52:2 (2006), 139–151 | DOI | MR | Zbl

[21] Zeifman A., Korotysheva A., “Perturbation bounds for $M_t/M_t/n$ queue with catastrophes”, Stoch. Models, 281:1 (2012), 49–62 | DOI | MR

[22] Zeifman A., Korolev V., Satin Y., Korotysheva A., Bening V., “Perturbation bounds and truncations for a class of Markovian queues”, Queueing Syst., 76:2 (2014), 205–221 | DOI | MR | Zbl

[23] Zeifman A. I., Korolev V. Y., “On perturbation bounds for continuous-time Markov chains”, Stat. Probab. Lett., 88:1 (2014), 66–72 | DOI | MR | Zbl

[24] Zeifman A., Satin Y., Korolev V., Shorgin S., “On truncations for weakly ergodic inhomogeneous birth and death processes”, Int. J. Appl. Math. Comp. Sci., 24:3 (2014), 503–518 | MR | Zbl

[25] Zeifman A. I., Satin Ya., Shilova G., Korolev V., Bening V., Shorgin S., “On truncations for SZK model”, Proceedings of 28th Eur. Conf. Mod. Simul., ECMS 2014 (Brescia, Italy, 2014), 577–582

[26] Zeifman A., Korolev V., “Two-sided bounds on the rate of convergence for continuous-time finite inhomogeneous Markov chains”, Stat. Probab. Lett., 103 (2015), 30–36 | DOI | MR | Zbl

[27] Zeifman A., Korotysheva A., Satin Ya., Korolev V., Shorgin S., Razumchik R., “Ergodicity and perturbation bounds for inhomogeneous birth and death processes with additional transitions from and to origin”, Int. J. Appl. Math. Comput. Sci., 25:4 (2015), 787–802 | DOI | MR | Zbl