@article{TVP_2016_61_3_a4,
author = {M. du Roy de Chaumaray},
title = {Large deviations for the squared radial {Ornstein{\textendash}Uhlenbeck} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {509--546},
year = {2016},
volume = {61},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a4/}
}
M. du Roy de Chaumaray. Large deviations for the squared radial Ornstein–Uhlenbeck process. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 509-546. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a4/
[1] Ben Alaya M., Kebaier A., “Parameter estimation for the square-root diffusions: ergodic and nonergodic case”, Stoch. Models., 28:4 (2012), 609–634 | DOI | MR | Zbl
[2] Ben Alaya M., Kebaier A., “Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions”, Stoch. Anal. Appl., 31:4 (2013), 552–573 | DOI | MR | Zbl
[3] Bercu B., Richou A., “Large deviations for the Ornstein–Uhlenbeck process with shift”, Ann. Appl. Probab., 47:3 (2015), 880–901 | DOI | MR | Zbl
[4] Craddock M., Lennox K. A., “The calculation of expectations for classes of diffusion processes by Lie symmetry methods”, Ann. Appl. Probab., 19:1 (2009), 127–157 | DOI | MR | Zbl
[5] Dembo A., Zeitouni O., Large deviations techniques and applications, Springer-Verlag, New York, 1998, 396 pp. | MR | Zbl
[6] du Roy de Chaumaray M., Weighted least squares estimators for the squared radial Ornstein–Uhlenbeck process, 2015, arXiv: hal-01207617
[7] Fournié E., Talay D., “Application de la statistique des diffusions à un modèle de taux d'intérêt”, Finance, 12:2 (1991), 79–111
[8] Gao F., Jiang H., “Moderate deviations for squared Ornstein–Uhlenbeck process”, Stattist. Probab. Lett., 79:11 (2009), 1378–1386 | DOI | MR | Zbl
[9] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, ryadov i proizvedenii, BKhV-Peterburg, SPb., 2011, 1176 pp.
[10] Kutoyants Y. A., Statistical Inference for Ergodic Diffusion Processes, Springer, London, 2004, 481 pp. | MR | Zbl
[11] Lamberton D., Lapeyre B., Introduction au Calcul Stochastique Appliqué à la Finance, Ellipses Édition Marketing, Paris, 1997, 176 pp. | MR
[12] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M.–L., 1963, 358 pp.
[13] Luke Y. L., “Inequalities for generalized hypergeometric functions”, J. Approx. Theory, 5 (1972), 41–65 | DOI | MR | Zbl
[14] Overbeck L., “Estimation for continuous branching processes”, Scand. J. Statist., 25:1 (1998), 111–126 | DOI | MR | Zbl
[15] Zani M., “Large deviations for squared radial Ornstein–Uhlenbeck processes”, Stoch. Process. Appl., 102:1 (2002), 25–42 | DOI | MR | Zbl