Large deviations for the squared radial Ornstein–Uhlenbeck process
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 509-546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish large deviation principles for the couple of the maximum likelihood estimators of dimensional and drift coefficients in the generalized squared radial Ornstein–Uhlenbeck process. We focus our attention on the most tractable situation, where the dimensional parameter $a$ is greater than $2$ and the drift parameter $b$ is negative $0$. In contrast to the previous literature, we state large deviation principles when both dimensional and drift coefficients are estimated simultaneously.
Keywords: squared radial Ornstein–Uhlenbeck process, maximum likelihood estimates, large deviations.
@article{TVP_2016_61_3_a4,
     author = {M. du Roy de Chaumaray},
     title = {Large deviations for the squared radial {Ornstein{\textendash}Uhlenbeck} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {509--546},
     year = {2016},
     volume = {61},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a4/}
}
TY  - JOUR
AU  - M. du Roy de Chaumaray
TI  - Large deviations for the squared radial Ornstein–Uhlenbeck process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 509
EP  - 546
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a4/
LA  - en
ID  - TVP_2016_61_3_a4
ER  - 
%0 Journal Article
%A M. du Roy de Chaumaray
%T Large deviations for the squared radial Ornstein–Uhlenbeck process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 509-546
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a4/
%G en
%F TVP_2016_61_3_a4
M. du Roy de Chaumaray. Large deviations for the squared radial Ornstein–Uhlenbeck process. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 509-546. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a4/

[1] Ben Alaya M., Kebaier A., “Parameter estimation for the square-root diffusions: ergodic and nonergodic case”, Stoch. Models., 28:4 (2012), 609–634 | DOI | MR | Zbl

[2] Ben Alaya M., Kebaier A., “Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions”, Stoch. Anal. Appl., 31:4 (2013), 552–573 | DOI | MR | Zbl

[3] Bercu B., Richou A., “Large deviations for the Ornstein–Uhlenbeck process with shift”, Ann. Appl. Probab., 47:3 (2015), 880–901 | DOI | MR | Zbl

[4] Craddock M., Lennox K. A., “The calculation of expectations for classes of diffusion processes by Lie symmetry methods”, Ann. Appl. Probab., 19:1 (2009), 127–157 | DOI | MR | Zbl

[5] Dembo A., Zeitouni O., Large deviations techniques and applications, Springer-Verlag, New York, 1998, 396 pp. | MR | Zbl

[6] du Roy de Chaumaray M., Weighted least squares estimators for the squared radial Ornstein–Uhlenbeck process, 2015, arXiv: hal-01207617

[7] Fournié E., Talay D., “Application de la statistique des diffusions à un modèle de taux d'intérêt”, Finance, 12:2 (1991), 79–111

[8] Gao F., Jiang H., “Moderate deviations for squared Ornstein–Uhlenbeck process”, Stattist. Probab. Lett., 79:11 (2009), 1378–1386 | DOI | MR | Zbl

[9] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, ryadov i proizvedenii, BKhV-Peterburg, SPb., 2011, 1176 pp.

[10] Kutoyants Y. A., Statistical Inference for Ergodic Diffusion Processes, Springer, London, 2004, 481 pp. | MR | Zbl

[11] Lamberton D., Lapeyre B., Introduction au Calcul Stochastique Appliqué à la Finance, Ellipses Édition Marketing, Paris, 1997, 176 pp. | MR

[12] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M.–L., 1963, 358 pp.

[13] Luke Y. L., “Inequalities for generalized hypergeometric functions”, J. Approx. Theory, 5 (1972), 41–65 | DOI | MR | Zbl

[14] Overbeck L., “Estimation for continuous branching processes”, Scand. J. Statist., 25:1 (1998), 111–126 | DOI | MR | Zbl

[15] Zani M., “Large deviations for squared radial Ornstein–Uhlenbeck processes”, Stoch. Process. Appl., 102:1 (2002), 25–42 | DOI | MR | Zbl