From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 489-508 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Tauberian relations between the moment generating function (MGF) and the complementary cumulative distribution function of a random variable whose MGF is finite only on part of the real line. We relate the right tail behavior of the cumulative distribution function of such a random variable to the behavior of its MGF near the critical moment. We apply our results to an arbitrary superposition of a CIR process and the time-integral of this process.
Keywords: regular variation, Tauberian theorems, moment generating function, tail asymptotic, CIR process.
@article{TVP_2016_61_3_a3,
     author = {S. M. Aly},
     title = {From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {489--508},
     year = {2016},
     volume = {61},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/}
}
TY  - JOUR
AU  - S. M. Aly
TI  - From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 489
EP  - 508
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/
LA  - en
ID  - TVP_2016_61_3_a3
ER  - 
%0 Journal Article
%A S. M. Aly
%T From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 489-508
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/
%G en
%F TVP_2016_61_3_a3
S. M. Aly. From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 489-508. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/

[1] Andersen L. B. G., Piterbarg V. V., “Moment explosions in stochastic volatility models”, Finance Stoch., 11:1 (2007), 29–50 | DOI | MR | Zbl

[2] Benaim S., Friz P. K., “Smile asymptotics II: Models with known moment generating function”, J. Appl. Probab., 45:1 (2008), 16–32 | DOI | MR | Zbl

[3] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge University Press, Cambridge, 1987, 491 pp. | MR | Zbl

[4] Cox J., Ingersoll J., Ross J., “A theory of the term structure of interest rates”, Econometrica, 53 (1985), 385–407 | DOI | MR | Zbl

[5] Dragulescu A. A., Yakovenko V. M., “Probability distribution of returns in the Heston model with stochastic volatility”, Quant. Finance, 2 (2002), 443–453 | DOI | MR

[6] Dufresne D., The integrated square-root process, Research paper No 90, Centre for Actuarial Studies, University of Melbourne, Melbourne, 2001

[7] Friz P., Gerhold S., Gulisashvili A., Sturm S., “On refined volatility smile expansion in the Heston model”, Quant. Finance, 11:8 (2011), 1151–1164 | DOI | MR | Zbl

[8] Hurd T., Kuznetsov A., “Explicit formulas for Laplace transforms of stochastic integrals Markov Process”, Related Fields, 14:2 (2008), 277–290 | MR | Zbl

[9] Gulisashvili A., Stein E. M., “Asymptotic behavior of the stock price distribution density and implied volatility in stochastic volatility models”, Appl. Math. Optim., 61:3 (2010), 287–315 | DOI | MR | Zbl

[10] Heston S., “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Stochastic Volatility. Selected Readings, ed. N. Shepard, Oxford Univ. Press, Oxford, 2005, 382–397 | Zbl

[11] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Mir, M., 1986, 445 pp.

[12] Lamberton D., Lapeyre B., Introduction to Stochastic Calculus Applied to Finance, Chapman and Hall/CRC, Boca Raton, 2008, 253 pp. | MR | Zbl

[13] Lee R. W., “The moment formula for implied volatility at extreme strikes”, Math. Finance, 14:3 (2004), 469–480 | DOI | MR | Zbl

[14] Nakagawa K., “Application of Tauberian theorem to the exponential decay of the tail probability of a random variable”, IEEE Trans. Inform. Theory, 53:9 (2007), 3239–3249 | DOI | MR | Zbl

[15] Shiga T., Watanabe S., “Bessel diffusions as a one-parameter family of diffusion processes”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 27 (1973), 37–46 | DOI | MR | Zbl