@article{TVP_2016_61_3_a3,
author = {S. M. Aly},
title = {From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {489--508},
year = {2016},
volume = {61},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/}
}
TY - JOUR AU - S. M. Aly TI - From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2016 SP - 489 EP - 508 VL - 61 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/ LA - en ID - TVP_2016_61_3_a3 ER -
S. M. Aly. From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 489-508. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/
[1] Andersen L. B. G., Piterbarg V. V., “Moment explosions in stochastic volatility models”, Finance Stoch., 11:1 (2007), 29–50 | DOI | MR | Zbl
[2] Benaim S., Friz P. K., “Smile asymptotics II: Models with known moment generating function”, J. Appl. Probab., 45:1 (2008), 16–32 | DOI | MR | Zbl
[3] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge University Press, Cambridge, 1987, 491 pp. | MR | Zbl
[4] Cox J., Ingersoll J., Ross J., “A theory of the term structure of interest rates”, Econometrica, 53 (1985), 385–407 | DOI | MR | Zbl
[5] Dragulescu A. A., Yakovenko V. M., “Probability distribution of returns in the Heston model with stochastic volatility”, Quant. Finance, 2 (2002), 443–453 | DOI | MR
[6] Dufresne D., The integrated square-root process, Research paper No 90, Centre for Actuarial Studies, University of Melbourne, Melbourne, 2001
[7] Friz P., Gerhold S., Gulisashvili A., Sturm S., “On refined volatility smile expansion in the Heston model”, Quant. Finance, 11:8 (2011), 1151–1164 | DOI | MR | Zbl
[8] Hurd T., Kuznetsov A., “Explicit formulas for Laplace transforms of stochastic integrals Markov Process”, Related Fields, 14:2 (2008), 277–290 | MR | Zbl
[9] Gulisashvili A., Stein E. M., “Asymptotic behavior of the stock price distribution density and implied volatility in stochastic volatility models”, Appl. Math. Optim., 61:3 (2010), 287–315 | DOI | MR | Zbl
[10] Heston S., “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Stochastic Volatility. Selected Readings, ed. N. Shepard, Oxford Univ. Press, Oxford, 2005, 382–397 | Zbl
[11] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Mir, M., 1986, 445 pp.
[12] Lamberton D., Lapeyre B., Introduction to Stochastic Calculus Applied to Finance, Chapman and Hall/CRC, Boca Raton, 2008, 253 pp. | MR | Zbl
[13] Lee R. W., “The moment formula for implied volatility at extreme strikes”, Math. Finance, 14:3 (2004), 469–480 | DOI | MR | Zbl
[14] Nakagawa K., “Application of Tauberian theorem to the exponential decay of the tail probability of a random variable”, IEEE Trans. Inform. Theory, 53:9 (2007), 3239–3249 | DOI | MR | Zbl
[15] Shiga T., Watanabe S., “Bessel diffusions as a one-parameter family of diffusion processes”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 27 (1973), 37–46 | DOI | MR | Zbl