From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 489-508

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Tauberian relations between the moment generating function (MGF) and the complementary cumulative distribution function of a random variable whose MGF is finite only on part of the real line. We relate the right tail behavior of the cumulative distribution function of such a random variable to the behavior of its MGF near the critical moment. We apply our results to an arbitrary superposition of a CIR process and the time-integral of this process.
Keywords: regular variation, Tauberian theorems, moment generating function, tail asymptotic, CIR process.
@article{TVP_2016_61_3_a3,
     author = {S. M. Aly},
     title = {From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {489--508},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/}
}
TY  - JOUR
AU  - S. M. Aly
TI  - From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 489
EP  - 508
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/
LA  - en
ID  - TVP_2016_61_3_a3
ER  - 
%0 Journal Article
%A S. M. Aly
%T From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 489-508
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/
%G en
%F TVP_2016_61_3_a3
S. M. Aly. From moment explosion to the asymptotic behavior of the cumulative distribution for a random variable. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 489-508. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a3/