Joint statistics of random walk on $Z^1$ and accumulation of visits
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 595-601 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the joint distribution $P_N(X,K\,|\,Z)$ of the location $X$ of a one-dimensional symmetric next neighbor random walk on the integer lattice, and the number of times the walk has visited a specified site $Z$. This distribution has a simple form in terms of the one variable distribution $p_{N'} (X')$, where $N'=N-K$ and $X'$ is a function of $X$, $K$, and $Z$. The marginal distributions of $X$ and $K$ are obtained, as well as their diffusion scaling limits.
Keywords: symmetric random walks, walk on integer lattice, frequency of visits, walker visit number correlation.
@article{TVP_2016_61_3_a10,
     author = {J. K. Percus and O. E. Percus},
     title = {Joint statistics of random walk on $Z^1$ and accumulation of visits},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {595--601},
     year = {2016},
     volume = {61},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a10/}
}
TY  - JOUR
AU  - J. K. Percus
AU  - O. E. Percus
TI  - Joint statistics of random walk on $Z^1$ and accumulation of visits
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 595
EP  - 601
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a10/
LA  - en
ID  - TVP_2016_61_3_a10
ER  - 
%0 Journal Article
%A J. K. Percus
%A O. E. Percus
%T Joint statistics of random walk on $Z^1$ and accumulation of visits
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 595-601
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a10/
%G en
%F TVP_2016_61_3_a10
J. K. Percus; O. E. Percus. Joint statistics of random walk on $Z^1$ and accumulation of visits. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 595-601. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a10/

[1] Kac M., “Random walk and the theory of Brownian motion”, Amer. Math. Monthly, 54 (1968), 369–391 | DOI | MR

[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee primeneniya, v. 1, Mir, M., 1984, 528 pp.

[3] Wilf H. S., Generating Functionology, Academic Press, San Diego, 1990 | MR