Mots-clés : total variation distance
@article{TVP_2016_61_3_a1,
author = {M. P. Savelov},
title = {Extremal characteristics of tests for multiple hypotheses with given mutual total variation distances},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {439--463},
year = {2016},
volume = {61},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a1/}
}
TY - JOUR AU - M. P. Savelov TI - Extremal characteristics of tests for multiple hypotheses with given mutual total variation distances JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2016 SP - 439 EP - 463 VL - 61 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a1/ LA - ru ID - TVP_2016_61_3_a1 ER -
M. P. Savelov. Extremal characteristics of tests for multiple hypotheses with given mutual total variation distances. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 439-463. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a1/
[1] Shiryaev A. N., Veroyatnost, v. 1, MNTsMO, M., 2004, 575 pp.
[2] Guschin A. A., “O lemme Fano i analogichnykh neravenstvakh dlya minimaksnogo riska”, Teoriya imovir. ta matem. statist., 67 (2002), 26–37 | Zbl
[3] Birge L., A new look at an old result: Fano's lemma, Prepublication $ n^0$ 632, Labotatoire de Probabilites Modeles Aleatores, Univesites de Paris 6 7, January 2001
[4] Elton J., Hill T. P., Kertz R., “Optimal-partitioning inequalities for nonatomis probability measures”, Trans. Amer. Math. Soc., 296:2 (1986), 703–725 | DOI | MR | Zbl
[5] Robertson J., Webb W., Cake-cutting Algorithms. Be Fair, if You Can, Natick, Massachusetts, 1998 | MR
[6] Fano R. M., Class notes for transmission of information, Course 6.574, MIT, Cambridge, MA, 1952
[7] Thompson W., Fair allocation rules, Working paper No 539, University of Rochester, December 2007
[8] Hill T. P., “Partitioning inequalities in probability and statistics”, Stochastic Inequalities, 22 (1993), 116–132 | MR
[9] Ben-Bassat M., “$f$-Entropies, probability of error, and feature selection”, Inform. Contr., 39 (1978), 227–242 | DOI | MR | Zbl
[10] Golic J., “On the relationship between the information measures and the Bayes probability of error”, J. IEEE Transac. Inform. Theory, 33:5 (1987), 681–693 | DOI | MR | Zbl
[11] Golic J., “On the Relationship Between the Separability Measures and the Bayes Probability of Error”, J. IEEE Transac. Inform. Theory, 33:5 (1987), 694–701 | DOI | MR | Zbl