Extremal characteristics of tests for multiple hypotheses with given mutual total variation distances
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 439-463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider extremal values of the characteristics of nonrandomized statistical criteria in the following case: there are $n$ hypotheses with given total variation distances. It is shown that finding the extremal values of a function of error probabilities may be reduced to solving a finite-dimensional linear programming problem. We found exact formulas for extreme values of the sum of all error probabilities in the case $n=3$.
Keywords: multiple hypothesis testing, nonrandomized tests, extremal sets of distributions.
Mots-clés : total variation distance
@article{TVP_2016_61_3_a1,
     author = {M. P. Savelov},
     title = {Extremal characteristics of tests for multiple hypotheses with given mutual total variation distances},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {439--463},
     year = {2016},
     volume = {61},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a1/}
}
TY  - JOUR
AU  - M. P. Savelov
TI  - Extremal characteristics of tests for multiple hypotheses with given mutual total variation distances
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 439
EP  - 463
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a1/
LA  - ru
ID  - TVP_2016_61_3_a1
ER  - 
%0 Journal Article
%A M. P. Savelov
%T Extremal characteristics of tests for multiple hypotheses with given mutual total variation distances
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 439-463
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a1/
%G ru
%F TVP_2016_61_3_a1
M. P. Savelov. Extremal characteristics of tests for multiple hypotheses with given mutual total variation distances. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 439-463. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a1/

[1] Shiryaev A. N., Veroyatnost, v. 1, MNTsMO, M., 2004, 575 pp.

[2] Guschin A. A., “O lemme Fano i analogichnykh neravenstvakh dlya minimaksnogo riska”, Teoriya imovir. ta matem. statist., 67 (2002), 26–37 | Zbl

[3] Birge L., A new look at an old result: Fano's lemma, Prepublication $ n^0$ 632, Labotatoire de Probabilites Modeles Aleatores, Univesites de Paris 6 7, January 2001

[4] Elton J., Hill T. P., Kertz R., “Optimal-partitioning inequalities for nonatomis probability measures”, Trans. Amer. Math. Soc., 296:2 (1986), 703–725 | DOI | MR | Zbl

[5] Robertson J., Webb W., Cake-cutting Algorithms. Be Fair, if You Can, Natick, Massachusetts, 1998 | MR

[6] Fano R. M., Class notes for transmission of information, Course 6.574, MIT, Cambridge, MA, 1952

[7] Thompson W., Fair allocation rules, Working paper No 539, University of Rochester, December 2007

[8] Hill T. P., “Partitioning inequalities in probability and statistics”, Stochastic Inequalities, 22 (1993), 116–132 | MR

[9] Ben-Bassat M., “$f$-Entropies, probability of error, and feature selection”, Inform. Contr., 39 (1978), 227–242 | DOI | MR | Zbl

[10] Golic J., “On the relationship between the information measures and the Bayes probability of error”, J. IEEE Transac. Inform. Theory, 33:5 (1987), 681–693 | DOI | MR | Zbl

[11] Golic J., “On the Relationship Between the Separability Measures and the Bayes Probability of Error”, J. IEEE Transac. Inform. Theory, 33:5 (1987), 694–701 | DOI | MR | Zbl