Probabilistic representation for Cauchy problem solution for evolution equation with Riemann–Liouville operator
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 417-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies properties of probabilistic approximation of a solution of the Cauchy problem for evolution equations with fractional differential operators of order more than two. To this end we construct analogous one-sided $\alpha$-stable distributions for noninteger $\alpha>2$. Although densities of these distributions are signed functions, using generalized functions methods, it is possible to give them an exact probability sense.
Keywords: Liouville–Riemann operator
Mots-clés : evolution equation, stable distribution.
@article{TVP_2016_61_3_a0,
     author = {M. V. Platonova},
     title = {Probabilistic representation for {Cauchy} problem solution for evolution equation with {Riemann{\textendash}Liouville} operator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--438},
     year = {2016},
     volume = {61},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - Probabilistic representation for Cauchy problem solution for evolution equation with Riemann–Liouville operator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 417
EP  - 438
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/
LA  - ru
ID  - TVP_2016_61_3_a0
ER  - 
%0 Journal Article
%A M. V. Platonova
%T Probabilistic representation for Cauchy problem solution for evolution equation with Riemann–Liouville operator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 417-438
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/
%G ru
%F TVP_2016_61_3_a0
M. V. Platonova. Probabilistic representation for Cauchy problem solution for evolution equation with Riemann–Liouville operator. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 417-438. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/

[1] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Kompleksnyi analog tsentralnoi predelnoi teoremy i veroyatnostnaya approksimatsiya integrala Feinmana”, Dokl. RAN, 459:4 (2014), 400–402 | DOI | Zbl

[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp.

[3] Kingman Dzh., Puassonovskie protsessy, MTsNMO, M., 2007, 136 pp.

[4] Kusis P., Vvedenie v teoriyu prostranstv $H_{p}$, Mir, M., 1984, 368 pp.

[5] Platonova M. V., “Simmetrichnye $\alpha$-ustoichivye raspredeleniya s netselym $\footnotesize\alpha>2$ i svyazannye s nimi stokhasticheskie protsessy”, Zap. nauchn. sem. POMI, 442, 2015, 101–117 | MR

[6] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[7] Lachal A., “From pseudo-random walk to pseudo-Brownian motion: first exit time from a one-sided or a two-sided interval”, Int. J. Stoch. Anal., 2014 (2014), 520136, 49 | MR | Zbl

[8] Nigmatullin R. R., “The realization of the generalized transfer equation in a medium with fractal geometry”, Phys. Status. Sol., 133:1 (1986), 425–430 | DOI | MR

[9] Orsingher E., Toaldo B., “Pseudoprocesses related to space-fractional higher-order heat-type equations”, Stoch. Anal. Appl., 32:4 (2014), 619–641 | DOI | MR | Zbl

[10] Saichev A. I., Zaslavsky G. M., “Fractional kinetic equations: solutions and applications”, AIP, Chaos, 7:4 (1997), 753–764 | DOI | MR | Zbl

[11] Schwartz L., Theorie des distributions, Hermann, Paris, 1998, 418 pp. | MR | Zbl

[12] Smorodina N. V., Faddeev M. M., “The Lévy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110:3 (2010), 1289–1308 | DOI | MR | Zbl

[13] Zaslavsky G. M., “Chaos, fractional kinetics, and anomalous transport”, Phys. Repts., 371:6 (2002), 461–580 | DOI | MR | Zbl