Probabilistic representation for Cauchy problem solution for evolution equation with Riemann--Liouville operator
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 417-438

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies properties of probabilistic approximation of a solution of the Cauchy problem for evolution equations with fractional differential operators of order more than two. To this end we construct analogous one-sided $\alpha$-stable distributions for noninteger $\alpha>2$. Although densities of these distributions are signed functions, using generalized functions methods, it is possible to give them an exact probability sense.
Keywords: Liouville–Riemann operator
Mots-clés : evolution equation, stable distribution.
@article{TVP_2016_61_3_a0,
     author = {M. V. Platonova},
     title = {Probabilistic representation for {Cauchy} problem solution for evolution equation with {Riemann--Liouville} operator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--438},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - Probabilistic representation for Cauchy problem solution for evolution equation with Riemann--Liouville operator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 417
EP  - 438
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/
LA  - ru
ID  - TVP_2016_61_3_a0
ER  - 
%0 Journal Article
%A M. V. Platonova
%T Probabilistic representation for Cauchy problem solution for evolution equation with Riemann--Liouville operator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 417-438
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/
%G ru
%F TVP_2016_61_3_a0
M. V. Platonova. Probabilistic representation for Cauchy problem solution for evolution equation with Riemann--Liouville operator. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 417-438. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/