Mots-clés : evolution equation, stable distribution.
@article{TVP_2016_61_3_a0,
author = {M. V. Platonova},
title = {Probabilistic representation for {Cauchy} problem solution for evolution equation with {Riemann{\textendash}Liouville} operator},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {417--438},
year = {2016},
volume = {61},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/}
}
TY - JOUR AU - M. V. Platonova TI - Probabilistic representation for Cauchy problem solution for evolution equation with Riemann–Liouville operator JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2016 SP - 417 EP - 438 VL - 61 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/ LA - ru ID - TVP_2016_61_3_a0 ER -
%0 Journal Article %A M. V. Platonova %T Probabilistic representation for Cauchy problem solution for evolution equation with Riemann–Liouville operator %J Teoriâ veroâtnostej i ee primeneniâ %D 2016 %P 417-438 %V 61 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/ %G ru %F TVP_2016_61_3_a0
M. V. Platonova. Probabilistic representation for Cauchy problem solution for evolution equation with Riemann–Liouville operator. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 417-438. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a0/
[1] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Kompleksnyi analog tsentralnoi predelnoi teoremy i veroyatnostnaya approksimatsiya integrala Feinmana”, Dokl. RAN, 459:4 (2014), 400–402 | DOI | Zbl
[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp.
[3] Kingman Dzh., Puassonovskie protsessy, MTsNMO, M., 2007, 136 pp.
[4] Kusis P., Vvedenie v teoriyu prostranstv $H_{p}$, Mir, M., 1984, 368 pp.
[5] Platonova M. V., “Simmetrichnye $\alpha$-ustoichivye raspredeleniya s netselym $\footnotesize\alpha>2$ i svyazannye s nimi stokhasticheskie protsessy”, Zap. nauchn. sem. POMI, 442, 2015, 101–117 | MR
[6] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.
[7] Lachal A., “From pseudo-random walk to pseudo-Brownian motion: first exit time from a one-sided or a two-sided interval”, Int. J. Stoch. Anal., 2014 (2014), 520136, 49 | MR | Zbl
[8] Nigmatullin R. R., “The realization of the generalized transfer equation in a medium with fractal geometry”, Phys. Status. Sol., 133:1 (1986), 425–430 | DOI | MR
[9] Orsingher E., Toaldo B., “Pseudoprocesses related to space-fractional higher-order heat-type equations”, Stoch. Anal. Appl., 32:4 (2014), 619–641 | DOI | MR | Zbl
[10] Saichev A. I., Zaslavsky G. M., “Fractional kinetic equations: solutions and applications”, AIP, Chaos, 7:4 (1997), 753–764 | DOI | MR | Zbl
[11] Schwartz L., Theorie des distributions, Hermann, Paris, 1998, 418 pp. | MR | Zbl
[12] Smorodina N. V., Faddeev M. M., “The Lévy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110:3 (2010), 1289–1308 | DOI | MR | Zbl
[13] Zaslavsky G. M., “Chaos, fractional kinetics, and anomalous transport”, Phys. Repts., 371:6 (2002), 461–580 | DOI | MR | Zbl