Estimation of availability function using Student distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 384-394 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the asymptotic behavior of the empirical availability function, which is an important reliability characteristic of technical, communication, information, or transport systems. Our main focus is the case of violation of the classical assumptions of homogeneity of failure flow or the existence of the expectation of failure-free performance or repair duration. Both the classical situation dealing with samples with nonrandom size and the situation where the number of available observations is unknown beforehand, that is, the sample size is random, are considered. In a special situation where the sample size has a negative binomial distribution, an analogue of the law of large numbers is proved for random sums of not necessarily identically distributed random variables describing conditions for the convergence of the distributions of negative binomial random sums to generalized gamma distributions. Thus, a simple limit scheme is proposed, within which generalized gamma distributions turn out to be limit laws. As a corollary, conditions are obtained for the convergence of the distributions of geometric random sums of independent nonidentically distributed random variables to the Weibull distribution.
@article{TVP_2016_61_2_a9,
     author = {H. Bevrani and V. Yu. Korolev},
     title = {Estimation of availability function using {Student} distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {384--394},
     year = {2016},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a9/}
}
TY  - JOUR
AU  - H. Bevrani
AU  - V. Yu. Korolev
TI  - Estimation of availability function using Student distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 384
EP  - 394
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a9/
LA  - ru
ID  - TVP_2016_61_2_a9
ER  - 
%0 Journal Article
%A H. Bevrani
%A V. Yu. Korolev
%T Estimation of availability function using Student distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 384-394
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a9/
%G ru
%F TVP_2016_61_2_a9
H. Bevrani; V. Yu. Korolev. Estimation of availability function using Student distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 384-394. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a9/

[1] Nadezhnost v tekhnike. Osnovnye ponyatiya. Terminy i opredeleniya, GOST 27.002—89

[2] Gnedenko B. V., Belyaev Yu. K., Solovev A. D., Matematicheskie metody v teorii nadezhnosti, Librokom, Osnovnye kharakteristiki nadezhnosti i ikh statisticheskii analiz, 2013, 584 pp.

[3] Cabuk S., “Simple test of hypotheses on system availability and mean time to repair”, IEEE Transactions on Reliability, 35 (1986), 581–583 | DOI | Zbl

[4] Gray H. L., Lewis T. O., “Nonparametric estimation from incomplete observation”, Technometrics, 9 (1967), 465–471 | DOI | MR

[5] Thompson W. E., Pelicio P. S., “Bayesian confidence limits for the availability of systems”, IEEE Transactions on Reliability, 24 (1975), 118–120 | DOI

[6] Baxter L. A., Li L., “Nonparametric confidence intervals for the renewal function and the point availability”, Scand. J. Statist., 1994, no. 3, 277–287 | MR | Zbl

[7] Baxter L. A., Li L., “Nonparametric estimation of the limiting availability”, Lifetime Data Anal., 2:4 (1996), 391–402 | DOI | Zbl

[8] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR

[9] Korolev V. Yu., “Skhodimost sluchainykh posledovatelnostei s nezavisimymi sluchainymi indeksami. I”, Teoriya veroyatn. i ee primen., 39:2 (1994), 313–333 | MR | Zbl

[10] Korolev V. Yu., “Skhodimost sluchainykh posledovatelnostei s nezavisimymi sluchainymi indeksami. II”, Teoriya veroyatn. i ee primen., 40:4 (1995), 907–910 | MR | Zbl

[11] Bening V. E., Korolev V. Yu., Generalized Poisson Models and their Applications in Insurance and Finance, VSP, Utrecht, 2002, 434 pp. | Zbl

[12] Korolev V. Yu., Zeifman A. I., A note on mixture representations for the Linnik and Mittag–Leffler distributions and their applications, arXiv: 1506.02778 [math.PR]

[13] Gnedenko B. V., “Ob otsenke neizvestnykh parametrov raspredeleniya pri sluchainom chisle nezavisimykh nablyudenii”, Trudy Tbilisskogo matematicheskogo instituta, 92 (1989), 146–150 | MR | Zbl

[14] Stacy E. W., “A generalization of the gamma distribution”, Ann. Math. Statist., 33:3 (1962), 1187–1192 | DOI | MR | Zbl

[15] Kalashnikov V. V., Geometric Sums: Bounds for Rare Events with Applications, Kluwer Academic Publishers, Dordrecht, 1997, 270 pp. | MR | Zbl