Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 378-384

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a one-channel queue with an unreliable server. Assuming that recovery time and service time have heavy tails, we find the asymptotic behavior of the large deviations probabilities for a process of virtual waiting time in a stationary regime.
@article{TVP_2016_61_2_a8,
     author = {S. Zh. Aibatov},
     title = {Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {378--384},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a8/}
}
TY  - JOUR
AU  - S. Zh. Aibatov
TI  - Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 378
EP  - 384
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a8/
LA  - ru
ID  - TVP_2016_61_2_a8
ER  - 
%0 Journal Article
%A S. Zh. Aibatov
%T Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 378-384
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a8/
%G ru
%F TVP_2016_61_2_a8
S. Zh. Aibatov. Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 378-384. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a8/