Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 378-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a one-channel queue with an unreliable server. Assuming that recovery time and service time have heavy tails, we find the asymptotic behavior of the large deviations probabilities for a process of virtual waiting time in a stationary regime.
@article{TVP_2016_61_2_a8,
     author = {S. Zh. Aibatov},
     title = {Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {378--384},
     year = {2016},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a8/}
}
TY  - JOUR
AU  - S. Zh. Aibatov
TI  - Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 378
EP  - 384
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a8/
LA  - ru
ID  - TVP_2016_61_2_a8
ER  - 
%0 Journal Article
%A S. Zh. Aibatov
%T Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 378-384
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a8/
%G ru
%F TVP_2016_61_2_a8
S. Zh. Aibatov. Large deviation probabilities for the system $M/G/1/\infty$ with unreliable server. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 378-384. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a8/

[1] Afanaseva L. G., Bashtova E. E., “Veroyatnosti bolshikh uklonenii dlya sistemy obsluzhivaniya s regeneriruyuschim vkhodyaschim potokom”, Teoriya veroyatn. i ee primen., 60:1 (2015), 171–177 | DOI | MR

[2] Borovkov A. A., Borovkov K. A., “Veroyatnosti bolshikh uklonenii dlya obobschennykh protsessov vosstanovleniya s pravilno menyayuschimisya raspredeleniyami skachkov”, Matem. trudy, 8:2 (2005), 69–136 | MR | Zbl

[3] Bocharov P. P., Pechinkin A. V., Teoriya massovogo obsluzhivaniya, Izd-vo Ros. un-ta druzhby narodov, M., 1995, 529 pp.

[4] Abate J., Whitt W., “Asymptotics for M/G/1 low-priority waiting-time tail probabilities”, Queueing Systems, 25 (1997), 173–233 | DOI | MR | Zbl

[5] Bingham N. H., Doney R. A., “Asymptotic properties of supercritical branching processes I: The Galton–Watson process”, Adv. Appl. Probab., 6:4 (1974), 711–731 | DOI | MR | Zbl

[6] De Meyer A., Teugels J. L., “On the asymptotic behaviour of the distributions of the busy period and service time in M/G/1”, J. Appl. Probab., 17:3 (1980), 802–813 | DOI | MR | Zbl

[7] Ganesh A., O'Connell N., Wischik D., Big Queues, Springer, Berlin, 2004, 260 pp. | MR | Zbl

[8] Gaver D. P. jun., “A waiting line with interrupted service including priority”, J. R. Stat. Soc. Ser. B, 24 (1962), 73–90 | MR | Zbl

[9] Keilson J., “Queues subject to service interruptions”, Ann. Math. Stat., 33:4 (1962), 1314–1322 | DOI | MR | Zbl