@article{TVP_2016_61_2_a4,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {Analytic diffusion processes: definition, properties, limit theorems},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {300--326},
year = {2016},
volume = {61},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a4/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - Analytic diffusion processes: definition, properties, limit theorems JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2016 SP - 300 EP - 326 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a4/ LA - ru ID - TVP_2016_61_2_a4 ER -
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Analytic diffusion processes: definition, properties, limit theorems. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 300-326. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a4/
[1] Albeverio S., Høegh-Krohn R., Mazzucchi S., “Mathematical theory of Feynman path integrals. An introduction”, Lecture Notes in Math., 523, 2008, 1–176 | DOI | MR
[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | MR
[3] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb., 2010, 464 pp.
[4] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Nauka, M., 1958, 439 pp.
[5] Gelfand I. M., Yaglom A. M., “Integrirovanie v funktsionalnykh prostranstvakh i ego primeneniya v kvantovoi fizike”, Uspekhi matem. nauk, 11:1 (1956), 77–114 | MR | Zbl
[6] Glimm J., Jaffe A., Quantum Physics. A Functional Integral Point of View, Springer-Verlag, New York, 1987, 535 pp. | MR
[7] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Veroyatnostnaya approksimatsiya reshenii zadachi Koshi dlya nekotorykh evolyutsionnykh uravnenii”, Zap. nauch. sem. POMI, 396, 2011, 111–141
[8] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Predelnaya teorema o skhodimosti funktsionalov ot sluchainogo bluzhdaniya k resheniyu zadachi Koshi dlya uravneniya ${\partial u}/{\partial t}={\sigma^2}\Delta u/2$ s kompleksnym parametrom $\sigma$”, Zap. nauch. sem. POMI, 420, 2013, 88–102 | MR
[9] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Kompleksnyi analog tsentralnoi predelnoi teoremy i veroyatnostnaya approksimatsiya integrala Feinmana”, Dokl. RAN, 459:3 (2014), 400–402 | DOI | MR | Zbl
[10] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “The probabilistic approximation of the Dirichlet initial boundary value problem solution for the equation ${\partial u}/{\partial t}=({\sigma^2}/{2})\Delta u$ with a complex parameter $\sigma$”, Markov Process. Related Fields, 20:3 (2014), 391–414 | MR | Zbl
[11] Itô K., “Wiener integral and Feynman integral”, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, v. II, Univ.of California Press, Berkeley, 1961, 227–238 | MR
[12] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR
[13] Smirnov V. I., Kurs vysshei matematiki, v. 5, Nauka, M., 1959, 655 pp. | MR
[14] Trotter H. F., “On the product of semi-groups of operators”, Proc. Amer. Math. Soc., 10 (1959), 545–551 | DOI | MR | Zbl
[15] Faddeev D. K., Vulikh B. Z., Uraltseva N. N., Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, 1981