Analytic diffusion processes: definition, properties, limit theorems
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 300-326 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper introduces the notion of an analytic diffusion process. Every process of this type is the limit of some sequence of random walks; however, the limit is understood not in the sense of convergence of measures but in the sense of convergence of generalized functions. Using the analytic diffusion processes it is possible to obtain a probabilistic approximation of solutions to Schrödinger evolution equations, whose right-hand side contains the elliptic operator with variable coefficient.
@article{TVP_2016_61_2_a4,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {Analytic diffusion processes: definition, properties, limit theorems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {300--326},
     year = {2016},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a4/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - Analytic diffusion processes: definition, properties, limit theorems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 300
EP  - 326
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a4/
LA  - ru
ID  - TVP_2016_61_2_a4
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T Analytic diffusion processes: definition, properties, limit theorems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 300-326
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a4/
%G ru
%F TVP_2016_61_2_a4
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Analytic diffusion processes: definition, properties, limit theorems. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 300-326. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a4/

[1] Albeverio S., Høegh-Krohn R., Mazzucchi S., “Mathematical theory of Feynman path integrals. An introduction”, Lecture Notes in Math., 523, 2008, 1–176 | DOI | MR

[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | MR

[3] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb., 2010, 464 pp.

[4] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Nauka, M., 1958, 439 pp.

[5] Gelfand I. M., Yaglom A. M., “Integrirovanie v funktsionalnykh prostranstvakh i ego primeneniya v kvantovoi fizike”, Uspekhi matem. nauk, 11:1 (1956), 77–114 | MR | Zbl

[6] Glimm J., Jaffe A., Quantum Physics. A Functional Integral Point of View, Springer-Verlag, New York, 1987, 535 pp. | MR

[7] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Veroyatnostnaya approksimatsiya reshenii zadachi Koshi dlya nekotorykh evolyutsionnykh uravnenii”, Zap. nauch. sem. POMI, 396, 2011, 111–141

[8] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Predelnaya teorema o skhodimosti funktsionalov ot sluchainogo bluzhdaniya k resheniyu zadachi Koshi dlya uravneniya ${\partial u}/{\partial t}={\sigma^2}\Delta u/2$ s kompleksnym parametrom $\sigma$”, Zap. nauch. sem. POMI, 420, 2013, 88–102 | MR

[9] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Kompleksnyi analog tsentralnoi predelnoi teoremy i veroyatnostnaya approksimatsiya integrala Feinmana”, Dokl. RAN, 459:3 (2014), 400–402 | DOI | MR | Zbl

[10] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “The probabilistic approximation of the Dirichlet initial boundary value problem solution for the equation ${\partial u}/{\partial t}=({\sigma^2}/{2})\Delta u$ with a complex parameter $\sigma$”, Markov Process. Related Fields, 20:3 (2014), 391–414 | MR | Zbl

[11] Itô K., “Wiener integral and Feynman integral”, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, v. II, Univ.of California Press, Berkeley, 1961, 227–238 | MR

[12] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR

[13] Smirnov V. I., Kurs vysshei matematiki, v. 5, Nauka, M., 1959, 655 pp. | MR

[14] Trotter H. F., “On the product of semi-groups of operators”, Proc. Amer. Math. Soc., 10 (1959), 545–551 | DOI | MR | Zbl

[15] Faddeev D. K., Vulikh B. Z., Uraltseva N. N., Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, 1981