Stochastic interpretation of quasilinear parabolic systems with cross-diffusion
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 268-299 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a stochastic interpretation of the generalized solution of the Cauchy problem for a strongly coupled system of quasilinear parabolic equations. To this end we derive a system of stochastic equations and prove that its solution allows us to construct a probabilistic representation of the original Cauchy problem solution and investigate its properties. Our construction of a probabilistic representation of the generalized solution of the Cauchy problem is crucially based on results of stochastic flow theory.
@article{TVP_2016_61_2_a3,
     author = {Ya. I. Belopol'skaya},
     title = {Stochastic interpretation of quasilinear parabolic systems with cross-diffusion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {268--299},
     year = {2016},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a3/}
}
TY  - JOUR
AU  - Ya. I. Belopol'skaya
TI  - Stochastic interpretation of quasilinear parabolic systems with cross-diffusion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 268
EP  - 299
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a3/
LA  - ru
ID  - TVP_2016_61_2_a3
ER  - 
%0 Journal Article
%A Ya. I. Belopol'skaya
%T Stochastic interpretation of quasilinear parabolic systems with cross-diffusion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 268-299
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a3/
%G ru
%F TVP_2016_61_2_a3
Ya. I. Belopol'skaya. Stochastic interpretation of quasilinear parabolic systems with cross-diffusion. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 268-299. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a3/

[1] Amann H., “Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems”, Diff. Int. Eqs., 3 (1990), 13–75 | MR | Zbl

[2] Mimura M., Kawasaki K., “Spatial segregation in competitive interaction-diffusion equations”, J. Math. Biol., 9 (1980), 49–64 | DOI | MR | Zbl

[3] Kim J., “Smooth solutions to a quasi-linear system of diffusion equations for a certain population model”, Nonlin. Anal., 8 (1984), 1121–1144 | DOI | MR

[4] Jüngel A., “Diffusive and nondiffusive population models”, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, eds. G. Naldi, L. Pareschi, G. Toscani, Birkhäuser, Basel, 2010, 397–425 | DOI | MR | Zbl

[5] Desvillettes L., Lepoutre T., Moussa A., “Entropy, Duality, and Cross Diffusion”, SIAM J. Math. Analysis, 46:1 (2014), 820–853 | DOI | MR | Zbl

[6] Shigesada N., Kawasaki K., Teramoto E., “Spatial segregation of interacting species”, J. Theor. Biol., 79 (1979), 83–99 | DOI | MR

[7] Belopolskaya Ya., “Markov processes associated with fully nondiagonal systems of parabolic equations”, Markov Process. Related Fields, 20:3 (2014), 452–478 | MR

[8] Belopolskaya Ya., “Probabilistic counterparts for strongly coupled parabolic systems”, Springer Proc. Math. Stat. Topics in Statistical Simulation, 114, 2014, 33–42 | MR

[9] Belopolskaya Ya. I., “Veroyatnostnaya model sistemy Lotka–Volterra s kross-diffuziei”, Zap. nauchn. sem. POMI, 431, 2014, 9–36 | MR

[10] Kunita H., Stochastic flows and stochastic differential equations, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[11] Kunita H., “Stochastic Flows Acting on Schwartz Distributions”, J. Theor. Pobab., 7:2 (1994), 247–278 | DOI | MR | Zbl

[12] Kunita H., “Generalized solutions of stochastic partial differential equations”, J. Theor. Pobab., 7:2 (1994), 279–308 | DOI | MR | Zbl

[13] Belopolskaya Ya. I., Daletskii Yu. L., “Issledovanie zadachi Koshi dlya sistem kvazilineinykh uravnenii pomoschyu markovskikh protsessov”, Izv. VUZ Matematika, 12 (1978), 6–17

[14] Belopolskaya Ya., Dalecky Yu., Stochastic equations and differential geometry, Kluwer Academic Publishers, Norwell, MA, 1990 | MR | Zbl

[15] Belopolskaya Ya., Woyczynski W., “Generalized solutions of nonlinear parabolic equations and diffusion processes”, Acta Appl. Math., 96:1–3 (2007), 55–69 | DOI | MR | Zbl

[16] Belopolskaya Ya., Woyczynski W., “Generalized solution of the Cauchy problem for systems of nonlinear parabolic equations and diffusion processes”, Stochast. Dynam., 11:1 (2012), 1–31 | MR

[17] Galiano G., Selgas V., “On a cross-diffusion segregation problem arising from a model of interacting particles”, Nonlinear Anal., 18 (2014), 34–49 | DOI | MR | Zbl

[18] Fontbona J., Meleard S., “Non local Lotka–Volterra system with cross-diffusion in an heterogeneous medium”, J. Math. Biology, 70:4 (2015), 829–854 | DOI | MR | Zbl

[19] Protter P., Stochastic Integration and Differential Equations, Springer, Berlin, 2010