@article{TVP_2016_61_2_a3,
author = {Ya. I. Belopol'skaya},
title = {Stochastic interpretation of quasilinear parabolic systems with cross-diffusion},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {268--299},
year = {2016},
volume = {61},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a3/}
}
Ya. I. Belopol'skaya. Stochastic interpretation of quasilinear parabolic systems with cross-diffusion. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 268-299. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a3/
[1] Amann H., “Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems”, Diff. Int. Eqs., 3 (1990), 13–75 | MR | Zbl
[2] Mimura M., Kawasaki K., “Spatial segregation in competitive interaction-diffusion equations”, J. Math. Biol., 9 (1980), 49–64 | DOI | MR | Zbl
[3] Kim J., “Smooth solutions to a quasi-linear system of diffusion equations for a certain population model”, Nonlin. Anal., 8 (1984), 1121–1144 | DOI | MR
[4] Jüngel A., “Diffusive and nondiffusive population models”, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, eds. G. Naldi, L. Pareschi, G. Toscani, Birkhäuser, Basel, 2010, 397–425 | DOI | MR | Zbl
[5] Desvillettes L., Lepoutre T., Moussa A., “Entropy, Duality, and Cross Diffusion”, SIAM J. Math. Analysis, 46:1 (2014), 820–853 | DOI | MR | Zbl
[6] Shigesada N., Kawasaki K., Teramoto E., “Spatial segregation of interacting species”, J. Theor. Biol., 79 (1979), 83–99 | DOI | MR
[7] Belopolskaya Ya., “Markov processes associated with fully nondiagonal systems of parabolic equations”, Markov Process. Related Fields, 20:3 (2014), 452–478 | MR
[8] Belopolskaya Ya., “Probabilistic counterparts for strongly coupled parabolic systems”, Springer Proc. Math. Stat. Topics in Statistical Simulation, 114, 2014, 33–42 | MR
[9] Belopolskaya Ya. I., “Veroyatnostnaya model sistemy Lotka–Volterra s kross-diffuziei”, Zap. nauchn. sem. POMI, 431, 2014, 9–36 | MR
[10] Kunita H., Stochastic flows and stochastic differential equations, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[11] Kunita H., “Stochastic Flows Acting on Schwartz Distributions”, J. Theor. Pobab., 7:2 (1994), 247–278 | DOI | MR | Zbl
[12] Kunita H., “Generalized solutions of stochastic partial differential equations”, J. Theor. Pobab., 7:2 (1994), 279–308 | DOI | MR | Zbl
[13] Belopolskaya Ya. I., Daletskii Yu. L., “Issledovanie zadachi Koshi dlya sistem kvazilineinykh uravnenii pomoschyu markovskikh protsessov”, Izv. VUZ Matematika, 12 (1978), 6–17
[14] Belopolskaya Ya., Dalecky Yu., Stochastic equations and differential geometry, Kluwer Academic Publishers, Norwell, MA, 1990 | MR | Zbl
[15] Belopolskaya Ya., Woyczynski W., “Generalized solutions of nonlinear parabolic equations and diffusion processes”, Acta Appl. Math., 96:1–3 (2007), 55–69 | DOI | MR | Zbl
[16] Belopolskaya Ya., Woyczynski W., “Generalized solution of the Cauchy problem for systems of nonlinear parabolic equations and diffusion processes”, Stochast. Dynam., 11:1 (2012), 1–31 | MR
[17] Galiano G., Selgas V., “On a cross-diffusion segregation problem arising from a model of interacting particles”, Nonlinear Anal., 18 (2014), 34–49 | DOI | MR | Zbl
[18] Fontbona J., Meleard S., “Non local Lotka–Volterra system with cross-diffusion in an heterogeneous medium”, J. Math. Biology, 70:4 (2015), 829–854 | DOI | MR | Zbl
[19] Protter P., Stochastic Integration and Differential Equations, Springer, Berlin, 2010