On the time of attaining a high level by a transient random walk in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 234-267

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a sequence of independent identically distributed pairs of random variables $(p_{i},q_{i}) $, $i\in \mathbf{Z}$, be given, with ${p_{0}+q_{0}=1}$ and $p_{0}>0$, $q_{0}>0$ a.s. We consider a random walk in the random environment $(p_{i},q_{i}) $, $i\in \mathbf{Z}$. This means that under a fixed environment a walking particle located at some moment in a state $i$ jumps either to the state $(i+1) $ with probability $p_{i}$ or to the state $(i-1) $ with probability $q_{i}$. It is assumed that $\mathbf{E}\,\log (p_{0}/q_{0}) 0$, i.e., that the random walk tends with time to $-\infty$. The set of such random walks may be divided into three types according to the value of the quantity $\mathbf{E}\,((p_{0}/q_{0}) \log (p_{0}/q_{0}))$. In the case when the expectation above is zero we prove a limit theorem as $n\to \infty $ for the of time distribution of reaching the level $n$ by the mentioned random walk.
@article{TVP_2016_61_2_a2,
     author = {V. I. Afanasyev},
     title = {On the time of attaining a high level by a transient random walk in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {234--267},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a2/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On the time of attaining a high level by a transient random walk in a random environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 234
EP  - 267
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a2/
LA  - ru
ID  - TVP_2016_61_2_a2
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On the time of attaining a high level by a transient random walk in a random environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 234-267
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a2/
%G ru
%F TVP_2016_61_2_a2
V. I. Afanasyev. On the time of attaining a high level by a transient random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 234-267. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a2/