On the time of attaining a high level by a transient random walk in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 234-267
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a sequence of independent identically distributed pairs of random variables $(p_{i},q_{i}) $, $i\in \mathbf{Z}$, be given, with ${p_{0}+q_{0}=1}$ and $p_{0}>0$, $q_{0}>0$ a.s. We consider a random walk in the random environment $(p_{i},q_{i}) $, $i\in \mathbf{Z}$. This means that under a fixed environment a walking particle located at some moment in a state $i$ jumps either to the state $(i+1) $ with probability $p_{i}$ or to the state $(i-1) $ with probability $q_{i}$. It is assumed that $\mathbf{E}\,\log (p_{0}/q_{0}) 0$, i.e., that the random walk tends with time to $-\infty$. The set of such random walks may be divided into three types according to the value of the quantity $\mathbf{E}\,((p_{0}/q_{0}) \log (p_{0}/q_{0}))$. In the case when the expectation above is zero we prove a limit theorem as $n\to \infty $ for the of time distribution of reaching the level $n$ by the mentioned random walk.
@article{TVP_2016_61_2_a2,
author = {V. I. Afanasyev},
title = {On the time of attaining a high level by a transient random walk in a random environment},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {234--267},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a2/}
}
TY - JOUR AU - V. I. Afanasyev TI - On the time of attaining a high level by a transient random walk in a random environment JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2016 SP - 234 EP - 267 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a2/ LA - ru ID - TVP_2016_61_2_a2 ER -
V. I. Afanasyev. On the time of attaining a high level by a transient random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 234-267. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a2/