Independent random variables on Abelian groups with independent sum and difference
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 404-414

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a second countable locally compact Abelian group. Let $\xi_1$, $\xi_2$ be independent random variables with values in the group $X$ and distributions $\mu_1$, $\mu_2$ such that the sum $\xi_1+\xi_2$ and the difference $\xi_1-\xi_2$ are independent. Assuming that the connected component of the zero of group $X$ contains a finite number of elements of order 2, we describe the possible distributions $\mu_k$.
@article{TVP_2016_61_2_a11,
     author = {G. M. Feldman},
     title = {Independent random variables on {Abelian} groups with independent sum and difference},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {404--414},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/}
}
TY  - JOUR
AU  - G. M. Feldman
TI  - Independent random variables on Abelian groups with independent sum and difference
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 404
EP  - 414
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/
LA  - ru
ID  - TVP_2016_61_2_a11
ER  - 
%0 Journal Article
%A G. M. Feldman
%T Independent random variables on Abelian groups with independent sum and difference
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 404-414
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/
%G ru
%F TVP_2016_61_2_a11
G. M. Feldman. Independent random variables on Abelian groups with independent sum and difference. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 404-414. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/