Independent random variables on Abelian groups with independent sum and difference
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 404-414
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a second countable locally compact Abelian group. Let $\xi_1$, $\xi_2$ be independent random variables with values in the group $X$ and distributions $\mu_1$, $\mu_2$ such that the sum $\xi_1+\xi_2$ and the difference $\xi_1-\xi_2$ are independent. Assuming that the connected component of the zero of group $X$ contains a finite number of elements of order 2, we describe the possible distributions $\mu_k$.
@article{TVP_2016_61_2_a11,
author = {G. M. Feldman},
title = {Independent random variables on {Abelian} groups with independent sum and difference},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {404--414},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/}
}
TY - JOUR AU - G. M. Feldman TI - Independent random variables on Abelian groups with independent sum and difference JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2016 SP - 404 EP - 414 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/ LA - ru ID - TVP_2016_61_2_a11 ER -
G. M. Feldman. Independent random variables on Abelian groups with independent sum and difference. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 404-414. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/