Independent random variables on Abelian groups with independent sum and difference
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 404-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a second countable locally compact Abelian group. Let $\xi_1$, $\xi_2$ be independent random variables with values in the group $X$ and distributions $\mu_1$, $\mu_2$ such that the sum $\xi_1+\xi_2$ and the difference $\xi_1-\xi_2$ are independent. Assuming that the connected component of the zero of group $X$ contains a finite number of elements of order 2, we describe the possible distributions $\mu_k$.
@article{TVP_2016_61_2_a11,
     author = {G. M. Feldman},
     title = {Independent random variables on {Abelian} groups with independent sum and difference},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {404--414},
     year = {2016},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/}
}
TY  - JOUR
AU  - G. M. Feldman
TI  - Independent random variables on Abelian groups with independent sum and difference
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 404
EP  - 414
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/
LA  - ru
ID  - TVP_2016_61_2_a11
ER  - 
%0 Journal Article
%A G. M. Feldman
%T Independent random variables on Abelian groups with independent sum and difference
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 404-414
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/
%G ru
%F TVP_2016_61_2_a11
G. M. Feldman. Independent random variables on Abelian groups with independent sum and difference. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 404-414. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a11/

[1] Rukhin A. L., “Ob odnoi teoreme S. N. Bernshteina”, Matem. zametki, 6:3 (1969), 301–307 | Zbl

[2] Rukhin A. L., “Nekotorye statisticheskie i veroyatnostnye zadachi na gruppakh”, Trudy MIAN, 111, 1970, 52–109 | Zbl

[3] Heyer H., Rall Ch., “Gaußsche Wahrscheinlichkeitsmaße auf Corwinschen Gruppen”, Math. Z., 128:4 (1972), 343–361 | DOI | MR | Zbl

[4] Feldman G. M., “Gaussovskie raspredeleniya v smysle Bernshteina na gruppakh”, Teoriya veroyatn. i ee primen., 31:1 (1986), 47–58 | MR | Zbl

[5] Baryshnikov Y., Eisenberg B., Stadje W., “Independent variables with independent sum and difference: $S^1$-case”, J. Multivariate Anal., 45:2 (1993), 161–170 | DOI | MR | Zbl

[6] Feldman G. M., “On groups for which the Bernstein characterization of a Gaussian distribution is valid”, Dopovidi Natsionalnoi akademii nauk Ukraini. Matematika. Prirodoznavstvo. Tekhnichni nauki, 2001, no. 8, 29–32 | MR | Zbl

[7] Neuenschwander D., “Gauss measures in the sense of Bernstein on the Heisenberg group”, Probab. Math. Statist., 14:2 (1993), 253–256 | MR | Zbl

[8] Neuenschwander D., Schott R., “The Bernstein and Skitovič–Darmois characterization theorems for Gaussian distributions on groups, symmetric spaces, and quantum groups”, Expo. Math., 15:4 (1997), 289–314 | MR | Zbl

[9] Franz U., Neuenschwander D., Schott R., “Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups”, Probab. Theory Related Fields, 109:1 (1997), 101–127 | DOI | MR | Zbl

[10] Mironyuk M. V., “O funktsionalnom uravnenii S. N. Bernshteina”, Zhurn. matem. fiziki, analiza, geometrii, 11:2 (2004), 177–188 | MR | Zbl

[11] Myronyuk M., “An analogue of the Bernstein theorem for the cylinder”, Aequationes Math., 71:1–2 (2006), 54–69 | DOI | MR | Zbl

[12] Parthasarathy K. R., Ranga Rao R., Varadhan S. R. S., “Probability distributions on locally compact Abelian groups”, Illinois J. Math., 7 (1963), 337–369 | MR | Zbl

[13] Feldman G. M., Functional equations and characterization problems on locally compact Abelian groups, EMS Tracts Math., 5, European Math. Soc., Zürich, 2008, 268 pp. | MR | Zbl

[14] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975, 654 pp.

[15] Feldman G. M., “Gaussovskie raspredeleniya v smysle Bernshteina: faktorizatsiya, nositeli, zakon nulya ili edinitsy”, Teoriya veroyatn. i ee primen., 56:3 (2011), 494–513 | DOI | MR

[16] Feldman G. M., “The Heyde theorem for locally compact Abelian groups”, J. Funct. Anal., 258:12 (2010), 3977–3987 | DOI | MR | Zbl

[17] Heyer H., Probability measures on locally compact groups, Ergeb. Math. Grenzgeb., 94, Springer-Verlag, Berlin–Heidelberg–New York, 1977, 531 pp. | MR | Zbl