Convergence rate in stochastic particle systems with synchronization
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 394-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A multidimensional Markov process $x(t) = (x_1(t),\ldots, x_N(t))$, $t \in \mathbf{R}_+$, describing a system of $N$ identical Brownian particles with synchronizing interaction is considered. In relative coordinates, connected with the moving observer, similar upper and lower bounds of the rate of convergence to the limit distribution of the distance metric for variation are obtained.
@article{TVP_2016_61_2_a10,
     author = {V. V. Karpushin},
     title = {Convergence rate in stochastic particle systems with synchronization},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {394--404},
     year = {2016},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a10/}
}
TY  - JOUR
AU  - V. V. Karpushin
TI  - Convergence rate in stochastic particle systems with synchronization
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 394
EP  - 404
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a10/
LA  - ru
ID  - TVP_2016_61_2_a10
ER  - 
%0 Journal Article
%A V. V. Karpushin
%T Convergence rate in stochastic particle systems with synchronization
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 394-404
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a10/
%G ru
%F TVP_2016_61_2_a10
V. V. Karpushin. Convergence rate in stochastic particle systems with synchronization. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 394-404. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a10/

[1] Mitra D., Mitrani I., “Analysis and optimum performance of two message-passing parallel processors synchronized by rollback”, Performance Evaluation, 7:2 (1987), 111–124 | DOI | MR | Zbl

[2] Bertsekas D. P., Tsitsiklis J. N., Parallel and Distributed Computation: Numerical Methods, Athena Scientific, Belmont, 1987, 730 pp.

[3] Manita A., Simonot F., “Clustering in stochastic asynchronous algorithms for distributed simulations”, Stochastic Algorithms: Foundations And Applications, Lecture Notes In Computer Science, 3777, 2005, 26–37 | DOI | Zbl

[4] Simeone O., Spagnolini U., Bar-Ness Y., Strogatz S. H., “Distributed synchronization in wireless networks”, IEEE Signal Processing Magazine, 25:5 (2008), 81–97 | DOI

[5] Manita A., “Clock synchronization in symmetric stochastic networks”, Queueing Systems, 76:2 (2014), 149–180 | DOI | MR | Zbl

[6] Malyshev V. A., Manita A. D., “Fazovye perekhody v modeli sinkhronizatsii vremeni”, Teoriya veroyatn. i ee primen., 50 (2005), 150–158 | DOI

[7] Malyshkin A. G., “Predelnaya dinamika dlya veroyatnostnykh modelei obmena informatsiei v setyakh parallelnykh vychislenii”, Problemy peredachi informatsii, 42:3 (2006), 78–96

[8] Manita A., Shcherbakov V., “Asymptotic analysis of a particle system with mean-field interaction”, Markov Processes and Related Fields, 11:3 (2005), 489–518 | MR | Zbl

[9] Manita A. D., “Stokhasticheskaya sinkhronizatsiya v bolshoi sisteme odnotipnykh chastits”, Teoriya veroyatn. i ee primen., 53:1 (2008), 162–168 | DOI

[10] Manita A., “Brownian particles interacting via synchronizations”, Communications in Statistics —Theory and Methods, 40:19–20 (2011), 3440–3451 | DOI | MR | Zbl

[11] Manita A., “Intrinsic space scales for multidimensional stochastic synchronization models”, New Perspectives on Stochastic Modeling and Data Analysis, eds. J. R. Bozeman, V. Girardin, C. H. Skiadas, ISAST, 2014, 271–282

[12] Manita A., “Vremya skhodimosti k ravnovesiyu v tsepyakh Markova s bolshim chislom sostoyanii”, Fundamentalnaya i prikladnaya matematika, 5:4 (1999), 1135–1157 | MR | Zbl

[13] Manita A. D., “O vremeni skhodimosti k ravnovesiyu v bolshikh konechnykh tsepyakh Markova”, Vestnik Moskovskogo universiteta. Seriya 1: matematika, mekhanika, 6 (1996), 56–59 | MR

[14] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971, 272 pp.

[15] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 400 pp.

[16] Manita A., Intrinsic scales for high-dimensional Lévy-driven models with non-Markovian synchronizing updates, 2014, 50 pp., arXiv: 1409.2919 [math.PR]

[17] Manita A., “Multidimensional synchronization models based on Lévy processes”, New Trends in Stochastic Modeling and Data Analysis, eds. R. Manca, S. McClean, Ch. H. Skiadas, ISAST, Athens, 2015