@article{TVP_2016_61_2_a10,
author = {V. V. Karpushin},
title = {Convergence rate in stochastic particle systems with synchronization},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {394--404},
year = {2016},
volume = {61},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a10/}
}
V. V. Karpushin. Convergence rate in stochastic particle systems with synchronization. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 394-404. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a10/
[1] Mitra D., Mitrani I., “Analysis and optimum performance of two message-passing parallel processors synchronized by rollback”, Performance Evaluation, 7:2 (1987), 111–124 | DOI | MR | Zbl
[2] Bertsekas D. P., Tsitsiklis J. N., Parallel and Distributed Computation: Numerical Methods, Athena Scientific, Belmont, 1987, 730 pp.
[3] Manita A., Simonot F., “Clustering in stochastic asynchronous algorithms for distributed simulations”, Stochastic Algorithms: Foundations And Applications, Lecture Notes In Computer Science, 3777, 2005, 26–37 | DOI | Zbl
[4] Simeone O., Spagnolini U., Bar-Ness Y., Strogatz S. H., “Distributed synchronization in wireless networks”, IEEE Signal Processing Magazine, 25:5 (2008), 81–97 | DOI
[5] Manita A., “Clock synchronization in symmetric stochastic networks”, Queueing Systems, 76:2 (2014), 149–180 | DOI | MR | Zbl
[6] Malyshev V. A., Manita A. D., “Fazovye perekhody v modeli sinkhronizatsii vremeni”, Teoriya veroyatn. i ee primen., 50 (2005), 150–158 | DOI
[7] Malyshkin A. G., “Predelnaya dinamika dlya veroyatnostnykh modelei obmena informatsiei v setyakh parallelnykh vychislenii”, Problemy peredachi informatsii, 42:3 (2006), 78–96
[8] Manita A., Shcherbakov V., “Asymptotic analysis of a particle system with mean-field interaction”, Markov Processes and Related Fields, 11:3 (2005), 489–518 | MR | Zbl
[9] Manita A. D., “Stokhasticheskaya sinkhronizatsiya v bolshoi sisteme odnotipnykh chastits”, Teoriya veroyatn. i ee primen., 53:1 (2008), 162–168 | DOI
[10] Manita A., “Brownian particles interacting via synchronizations”, Communications in Statistics —Theory and Methods, 40:19–20 (2011), 3440–3451 | DOI | MR | Zbl
[11] Manita A., “Intrinsic space scales for multidimensional stochastic synchronization models”, New Perspectives on Stochastic Modeling and Data Analysis, eds. J. R. Bozeman, V. Girardin, C. H. Skiadas, ISAST, 2014, 271–282
[12] Manita A., “Vremya skhodimosti k ravnovesiyu v tsepyakh Markova s bolshim chislom sostoyanii”, Fundamentalnaya i prikladnaya matematika, 5:4 (1999), 1135–1157 | MR | Zbl
[13] Manita A. D., “O vremeni skhodimosti k ravnovesiyu v bolshikh konechnykh tsepyakh Markova”, Vestnik Moskovskogo universiteta. Seriya 1: matematika, mekhanika, 6 (1996), 56–59 | MR
[14] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971, 272 pp.
[15] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 400 pp.
[16] Manita A., Intrinsic scales for high-dimensional Lévy-driven models with non-Markovian synchronizing updates, 2014, 50 pp., arXiv: 1409.2919 [math.PR]
[17] Manita A., “Multidimensional synchronization models based on Lévy processes”, New Trends in Stochastic Modeling and Data Analysis, eds. R. Manca, S. McClean, Ch. H. Skiadas, ISAST, Athens, 2015