@article{TVP_2016_61_1_a4,
author = {T. Choulli and J. Ma},
title = {Explicit description of {HARA} forward utilities and their optimal portfolios},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {69--113},
year = {2016},
volume = {61},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a4/}
}
T. Choulli; J. Ma. Explicit description of HARA forward utilities and their optimal portfolios. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 1, pp. 69-113. http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a4/
[1] Anthropelos M., Forward exponential performances: pricing and optimal risk sharing, arXiv: 1109.3908v3 | MR
[2] Berrier F., Rogers L. C. G., Tehranchi M. R., A characterization of forward utility functions, Preprint, University of Cambridge, Cambridge, 2009
[3] Clark S. A., “The random utility model with an infinite choice space”, Econ. Theory, 7:1 (1996), 179–189 | DOI | MR | Zbl
[4] Cohen M. A., “Random utility systems —the infinite case”, J. Math. Psychol., 22:1 (1980), 1–23 | DOI | MR | Zbl
[5] Choulli T., Deng J., Ma J., “How non-arbitrage, viability and numéraire portfolio are related”, Finance Stoch., 19:4 (2015), 719–741 | DOI | MR | Zbl
[6] Choulli T., Ma J., An optimal deflator and forward utilities, Manuscript
[7] Choulli T., Ma J., Morlais M., “Three essays on exponential hedging with variable exit times”, Inspired by Finance: The Musiela Festschrift, eds. Y. Kabanov, M. Rutkowski, Th. Zariphopoulou, Springer, Cham, 2011, 117–158 | MR
[8] Choulli T., Stricker Ch., “Comparing the minimal Hellinger martingale measure of order $q$ to the $q$-optimal martingale measure”, Stochastic Process. Appl., 19:14 (2009), 1368–1385 | DOI | MR
[9] Choulli T., Stricker C., “Minimal entropy-Hellinger martingale measure in incomplete markets”, Math. Finance, 15:3 (2005), 465–490 | DOI | MR | Zbl
[10] Choulli T., Stricker C., “More on minimal entropy-Hellinger martingale measure”, Math. Finance, 16:1 (2006), 1–19 | DOI | MR | Zbl
[11] Choulli T., Stricker C., Li J., “Minimal Hellinger martingale measures of order $q$”, Finance Stoch., 11:3 (2007), 399–427 | DOI | MR
[12] Cvitanic J., Karatzas I., “Convex duality in constrained portfolio optimization”, Ann. Appl. Probab., 2:4 (1992), 767–818 | DOI | MR | Zbl
[13] Cvitanic J., Schachermayer W., Wang H., “Utility maximization in incomplete markets with random endowment”, Finance Stoch., 5:2 (2001), 259–272 | DOI | MR | Zbl
[14] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl
[15] Dellacherie C., Meyer P-A., Probabilités et Potentiel, Chap. V–VIII: Théorie des martingales, Hermann, Paris, 1980, 476 pp. | MR
[16] Evans J., Henderson V., Hobson D., “Optimal timing for an indivisible asset sale”, Math. Finance, 18:4 (2008), 545–567 | DOI | MR | Zbl
[17] Fisher I., “The impatience theory of interest”, American Economic Review, 3 (1931), 610–618
[18] Goll T., Kallsen J., “A complete explicit solution to the log-optimal portfolio problem”, Ann. Appl. Probab., 13:2 (2003), 774–799 | DOI | MR | Zbl
[19] Hakansson N. H., “Optimal investment and consumption strategies under risk, an uncertain lifetime, and insurance”, Int. Econ. Rev., 10 (1969), 443–466 | DOI | Zbl
[20] Harrison J. M., Pliska S. R., “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Process. Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl
[21] He S-W.., Wang J.-G., Yan J.-A., Semimartingale Theory and Stochastic Calculus, Science Press/CRC Press, Beijing/Boca Raton, 1992, 546 pp. | MR | Zbl
[22] Henderson V., “Valuing the option to invest in an incomplete market”, Math. Finance Econ., 1:2 (2007), 103–128 | DOI | MR | Zbl
[23] Henderson V., Hobson D., “Horizon-unbiased utility functions”, Stochastic Process. Appl., 117:11 (2007), 1621–1641 | DOI | MR | Zbl
[24] Jacod J., Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, 1979, 539 pp. | MR | Zbl
[25] Jacod J., Shiryaev A., Limit Theorems for Stochastic Processes, Springer, Berlin, 2003, 661 pp. | MR | Zbl
[26] Kabanov Y. M., Kardaras K., Song S., No arbitrage and local martingale deflators, arXiv: 1501.04363
[27] Kabanov Y. M., Liptser R. S., Shiryaev A. N., “On the proximity in variation of probability measures”, Soviet Math. Dokl., 30:2 (1984) | MR | Zbl
[28] Kabanov Y. M., “An estimate of closeness in variation of probability measures”, Probab. Theory Appl., 30:2 (1985) | MR | Zbl
[29] Kabanov Y. M., Liptser R. S., Shiryaev A. N., “On the variation distance for probability measures defined on a filtered space”, Probab. Theory Related Fields, 71:1 (1986), 19–35 | DOI | MR | Zbl
[30] Karatzas I., Wang H., “Utility maximization with discretionary stopping”, SIAM J. Control Optim., 39:1 (2000), 306–329 | DOI | MR | Zbl
[31] Karatzas I., Žitković G., “Optimal consumption from investment and random endowment in incomplete semimartingale markets”, Ann. Probab., 31:4 (2003), 1821–1858 | DOI | MR | Zbl
[32] Kardaras C., “Market viability via absence of arbitrage of the first kind”, Finance Stoch., 16:4 (2012), 651–667 | DOI | MR | Zbl
[33] Kramkov D., Schachermayer W., “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl
[34] Ma J., Minimal Hellinger deflators and HARA forward utilities with applications: Hedging with variable horizon, PhD thesis, University of Alberta, Edmonton, 2013 | MR
[35] McFadden D., Richter M. K., “Stochastic rationality and revealed stochastic preference”, Preferences, Uncertainty, and Optimality, Essays in Honor of Leonid Hurwicz, Westview Press, Oxford, 1990, 161–186 | MR
[36] Merton R. C., “Optimum consumption and portfolio rules in a continuous-time model”, J. Econom. Theory, 3:4 (1971), 373–413 | DOI | MR | Zbl
[37] Merton R. C., “Theory of rational option pricing”, Bell J. Econ. Manag. Sci., 4:1 (1973), 141–183 | DOI | MR | Zbl
[38] Musiela M., Zariphopoulou T., “Investment and valuation under backward and forward dynamic exponential utilities in a stochastic factor model”, Advances in Mathematical Finance, eds. M. Fu, R. Jarrow, J. Yen, R. Elliot, et al., Birkhauser, Boston, 2007, 303–334 | DOI | MR | Zbl
[39] Musiela M., Zariphopoulou T., “Backward and forward utilities and the associated indifference pricing systems: The case study of the binomial model”, Indifference Pricing, ed. R. Carmona, Princeton Univ. Press, Princeton, 2009, 3–43 | Zbl
[40] Musiela M., Zariphopoulou T., “Portfolio choice under dynamic investment performance criteria”, Quant. Finance, 9:2 (2009), 161–170 | DOI | MR | Zbl
[41] Musiela M., Zariphopoulou T., “Portfolio choice under space-time monotone performance criteria”, SIAM J. Financial Math., 1 (2010), 326–365 | DOI | MR | Zbl
[42] Rockafellar R. T., Convex Analysis, Princeton Univ. Press, Princeton, 1970 | MR | Zbl
[43] Suppes P., Krantz D. M., Luce R. D., Tversky A., Foundations of Measurement, v. II, Geometrical, threshold, and probabilistic representations, Academic Press, San Diego, 1989, 493 pp. | MR | Zbl
[44] Yaari M. E., “Uncertain lifetime, life insurance and the theory of the consumer”, Rev. Econ. Stud., 32 (1965), 137–158 | DOI
[45] Zariphopoulou T., Žitković G., “Maturity-independent risk measures”, SIAM J. Financial Math., 1:1 (2010), 266–288 | DOI | MR | Zbl
[46] Žitković G., “A dual characterization of self-generation and exponential forward performances”, Ann. Appl. Probab., 19:6 (2009), 2176–2210 | DOI | MR | Zbl