Maximal exponential inequalities for certain diffusion processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 1, pp. 198-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2016_61_1_a12,
     author = {C. Makasu},
     title = {Maximal exponential inequalities for certain diffusion processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {198--206},
     year = {2016},
     volume = {61},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a12/}
}
TY  - JOUR
AU  - C. Makasu
TI  - Maximal exponential inequalities for certain diffusion processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 198
EP  - 206
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a12/
LA  - en
ID  - TVP_2016_61_1_a12
ER  - 
%0 Journal Article
%A C. Makasu
%T Maximal exponential inequalities for certain diffusion processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 198-206
%V 61
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a12/
%G en
%F TVP_2016_61_1_a12
C. Makasu. Maximal exponential inequalities for certain diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 1, pp. 198-206. http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a12/

[1] Azéma J., Yor M., “Une solution simple au probléme de Skorokhod”, Lecture Notes in Math., 721, 1979, 90–115 | DOI | Zbl

[2] Dubins L. E., Schwarz G., “A sharp inequality for sub-martingales and stopping times”, Astérisque, 157–158, 1988, 129–145 | MR | Zbl

[3] Dubins L. E., Shepp L. A., Shiryaev A. N., “Optimal stopping rules and maximal inequalities for Bessel processes”, Theory Probab. Appl., 38 (1993), 226–261 | DOI | MR | Zbl

[4] Graversen S. E., Peskir G., “On Doob's maximal inequality for Brownian motion”, Stochastic Process. Appl., 69 (1997), 111–125 | DOI | MR | Zbl

[5] Graversen S. E., Peskir G., “Optimal stopping and maximal inequalities for geometric Brownian motion”, J. Appl. Probab., 35 (1998), 856–872 | DOI | MR | Zbl

[6] Lakshmikantham V., Leela S., Differential and Integral Inequalities, v. I, Academic Press, New York, 1969 | Zbl

[7] Lyul'ko Ya. A., “Exact inequalities for the maximum of a skew Brownian motion”, Mosc. Univ. Math. Bull., 67 (2012), 164–169 | DOI | MR | Zbl

[8] Lyul'ko Ya. A., Shiryaev A. N., “Sharp maximal inequalities for stochastic processes”, Proceedings of the Steklov Inst. Math., 287 (2014), 155–173 | DOI | Zbl

[9] Peskir G., “Optimal stopping of the maximum process: The maximality principle”, Ann. Probab., 26:4 (1998), 1614–1640 | DOI | MR | Zbl

[10] Shepp L. A., Shiryaev A. N., “The Russian option: reduced regret”, Ann. Appl. Probab., 3 (1993), 631–640 | DOI | MR | Zbl

[11] Shepp L. A., Shiryaev A. N., “A new look at the “Russian option””, Theory Probab. Appl., 39 (1994), 103–119 | DOI | MR | Zbl

[12] Shiryaev A. N., Optimal Stopping Rules, Springer-Verlag, Berlin, 1978, 220 pp. | MR | Zbl

[13] Szarski J., Differential Inequalities, Polish Scientific Publishers, Warszaw, 1965, 250 pp. | MR | Zbl

[14] Walter W., Differential and Integral Inequalities, Springer, Berlin, 1964, 353 pp. | MR

[15] Zhitlukhin M. V., “A maximal inequality for skew Brownian motion”, Uspekhi Mat. Nauk., 64:5 (2009), 175–176 | DOI | MR