@article{TVP_2016_61_1_a12,
author = {C. Makasu},
title = {Maximal exponential inequalities for certain diffusion processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {198--206},
year = {2016},
volume = {61},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a12/}
}
C. Makasu. Maximal exponential inequalities for certain diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 1, pp. 198-206. http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a12/
[1] Azéma J., Yor M., “Une solution simple au probléme de Skorokhod”, Lecture Notes in Math., 721, 1979, 90–115 | DOI | Zbl
[2] Dubins L. E., Schwarz G., “A sharp inequality for sub-martingales and stopping times”, Astérisque, 157–158, 1988, 129–145 | MR | Zbl
[3] Dubins L. E., Shepp L. A., Shiryaev A. N., “Optimal stopping rules and maximal inequalities for Bessel processes”, Theory Probab. Appl., 38 (1993), 226–261 | DOI | MR | Zbl
[4] Graversen S. E., Peskir G., “On Doob's maximal inequality for Brownian motion”, Stochastic Process. Appl., 69 (1997), 111–125 | DOI | MR | Zbl
[5] Graversen S. E., Peskir G., “Optimal stopping and maximal inequalities for geometric Brownian motion”, J. Appl. Probab., 35 (1998), 856–872 | DOI | MR | Zbl
[6] Lakshmikantham V., Leela S., Differential and Integral Inequalities, v. I, Academic Press, New York, 1969 | Zbl
[7] Lyul'ko Ya. A., “Exact inequalities for the maximum of a skew Brownian motion”, Mosc. Univ. Math. Bull., 67 (2012), 164–169 | DOI | MR | Zbl
[8] Lyul'ko Ya. A., Shiryaev A. N., “Sharp maximal inequalities for stochastic processes”, Proceedings of the Steklov Inst. Math., 287 (2014), 155–173 | DOI | Zbl
[9] Peskir G., “Optimal stopping of the maximum process: The maximality principle”, Ann. Probab., 26:4 (1998), 1614–1640 | DOI | MR | Zbl
[10] Shepp L. A., Shiryaev A. N., “The Russian option: reduced regret”, Ann. Appl. Probab., 3 (1993), 631–640 | DOI | MR | Zbl
[11] Shepp L. A., Shiryaev A. N., “A new look at the “Russian option””, Theory Probab. Appl., 39 (1994), 103–119 | DOI | MR | Zbl
[12] Shiryaev A. N., Optimal Stopping Rules, Springer-Verlag, Berlin, 1978, 220 pp. | MR | Zbl
[13] Szarski J., Differential Inequalities, Polish Scientific Publishers, Warszaw, 1965, 250 pp. | MR | Zbl
[14] Walter W., Differential and Integral Inequalities, Springer, Berlin, 1964, 353 pp. | MR
[15] Zhitlukhin M. V., “A maximal inequality for skew Brownian motion”, Uspekhi Mat. Nauk., 64:5 (2009), 175–176 | DOI | MR