First passage problems over increasing boundaries for Lévy processes with exponentially decayed Lévy measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 1, pp. 186-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2016_61_1_a11,
     author = {Sh. Kaji},
     title = {First passage problems over increasing boundaries for {L\'evy} processes with exponentially decayed {L\'evy} measures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {186--198},
     year = {2016},
     volume = {61},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a11/}
}
TY  - JOUR
AU  - Sh. Kaji
TI  - First passage problems over increasing boundaries for Lévy processes with exponentially decayed Lévy measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 186
EP  - 198
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a11/
LA  - en
ID  - TVP_2016_61_1_a11
ER  - 
%0 Journal Article
%A Sh. Kaji
%T First passage problems over increasing boundaries for Lévy processes with exponentially decayed Lévy measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 186-198
%V 61
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a11/
%G en
%F TVP_2016_61_1_a11
Sh. Kaji. First passage problems over increasing boundaries for Lévy processes with exponentially decayed Lévy measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 1, pp. 186-198. http://geodesic.mathdoc.fr/item/TVP_2016_61_1_a11/

[1] Aurzada F., Kramm T., “First exit of Brownian motion from a one-sided moving boundary”, The Banff Volume, Proceedings of the sixth high dimensional probability VI (Banff, Canada, October 9–14, 2011), Birkhäuser, Basel, 2013, 213–217 | MR | Zbl

[2] Aurzada F., Kramm T., “The first passage time problem over a moving boundary for asymptotically stable Lévy processes”, J. Theor. Probab. | DOI

[3] Aurzada F., Kramm T., Savov M., “First passage times of Lévy processes over a one-sided moving boundary”, Markov Process. Relat. Fields, 21:1 (2015), 1–38 | MR | Zbl

[4] Bertoin J., Lévy Processes, Cambridge Univ.Press, Cambridge, 1996, 265 pp. | MR

[5] Denisov D., Wachtel V., “Exact asymptotics for the instant of crossing a curved boundary by an asymptotically stable random walk”, Probab. Theory and its Appl. | DOI | MR

[6] Feller W., An introduction to probability theory and its applications, v. II, Wiley, 1966 | MR | MR | Zbl

[7] Gärtner J., “Location of wave fronts for the multidimensional KPP equation and Brownian first exit densities”, Math. Nachr., 105 (1982), 317–351 | DOI | MR

[8] Greenwood P. E., Novikov A. A., “One-sided boundary crossing for processes with independent increments”, Teoriya veroyatn. i ee primen., 31:2, 246–265 | MR

[9] Griffin P. S., Maller R. A., “Small and large time stability of the time taken for a Lévy process to cross curved boundaries”, Ann. Inst. H. Poincaré Probab. Statist., 49:1 (2014), 208–235 | DOI | MR

[10] Novikov A. A., “The martingale approach in problems on the time of the first crossing of nonlinear boundaries”, Trudy Mat. Inst. Steklov., 158 (1981), 130–152 | MR | Zbl

[11] Novikov A. A., “The crossing time of a one-sided nonlinear boundary by sums of independent random variables”, Theory of Prob., Appl., 27:4 (1982), 688–702 | DOI | MR | Zbl | Zbl

[12] Novikov A. A., “Martingales, tauberian theorem, and strategies of gambling”, Theory of Prob., Appl., 41:4 (1996), 716–729 | DOI | DOI | MR | Zbl

[13] Uchiyama K., “Brownian first exit from and sojourn over one-sided moving boundary and application”, Z. Wahrsch. Verw. Gebiete, 54:1 (1980), 75–116 | DOI | MR | Zbl

[14] Vondra$\check{c}$ek Z., “Asymptotics of first-passage time over a one-sided stochastic boundary”, J. Theoret. Probab., 13:1 (2000), 279–309 | DOI | MR | Zbl