@article{TVP_2015_60_4_a5,
author = {Sh. Song},
title = {Random time with differentiable conditional distribution function},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {740--769},
year = {2015},
volume = {60},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a5/}
}
Sh. Song. Random time with differentiable conditional distribution function. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 4, pp. 740-769. http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a5/
[1] Andersen L., Broadie M., “A primal-dual simulation algorithm for pricing multidimensional American options”, Management Sci., 50:9 (2004), 1222–1234 | DOI
[2] Bäuerle N., Rieder U., Markov Decision Processes with Applications to Finance, Springer, Heidelberg, 2011, 388 pp. | MR | Zbl
[3] Belomestny N., Kolodko A., Schoenmakers J., “Regression methods for stochastic control problems and their convergence analysis”, SIAM J. Control Optim., 48:5 (2010), 3562–3588 | DOI | MR | Zbl
[4] Bertsekas D. P., Dynamic Programming and Optimal Control, 3rd ed., Athena Scientific, Belmont, MA, 2005, 558 pp. | MR | Zbl
[5] Bertsekas D. P., Tsitsiklis J. N., Neuro-Dynamic Programming, Athena Scientific, Belmont, MA, 1996, 512 pp. | Zbl
[6] Carmona R., Touzi N., “Optimal multiple stopping and valuation of swing options”, Mathem. Finance, 18:2 (2008), 239–268 | DOI | MR | Zbl
[7] Carriere J. F., “Valuation of the early-exercise price for options using simulations and nonparametric regression”, Insurance: Mathematics and Economics, 19:1 (1996), 19–30 | DOI | MR | Zbl
[8] Clement E., Lamberton D., Protter P., “An analysis of the {L}ongstaff–{S}chwartz algorithm for {A}merican option pricing”, Finance and Stochastics, 6:4 (2002), 449–471 | DOI | MR | Zbl
[9] Egloff D., “{M}onte {C}arlo algorithms for optimal stopping and statistical learning”, Appl. Probab., 15:2 (2005), 1396–1432 | DOI | MR | Zbl
[10] Egloff D., Kohler M., Todorovic N., “A dynamic look-ahead {M}onte {C}arlo algorithm”, Ann. Appl. Probab., 17:4 (2007), 1138–1171 | DOI | MR | Zbl
[11] Fan J., Gijbels I., Local Polynomial Modelling and Its Applications, Chapman Hall/CRC, Boca Raton, 1996, 360 pp. | MR | Zbl
[12] Feinberg E. A., Shwartz A., Handbook of Markov Decision Processes, Kluwer, Norwell, MA, 2002, 565 pp. | MR | Zbl
[13] Glasserman P., {M}onte {C}arlo Methods in Financial Engineering, Springer, New York, 2003, 596 pp. | MR
[14] Haugh M., Kogan L., “Pricing {A}merican options: A duality approach”, Oper.Res., 52:2 (2004), 258–270 | DOI | MR | Zbl
[15] Hinz J., “Optimal stochastic switching under convexity assumptions”, SIAM J. Control Optim., 52:1 (2014), 164–188 | DOI | MR | Zbl
[16] Jamshidian F., Numeraire-invariant option pricing {A}merican, {B}ermudan, and trigger stream rollover, July 2004. Version 1.6.
[17] Joshi M. S., Yap N., The multiplicative dual for multiple-exercise options, 2014 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2430558
[18] Longstaff F., Schwartz E., “Valuing {A}merican options by simulation: a simple least-squares approach”, Rev. Financial Studies, 14:1 (2001), 113–147 | DOI
[19] Meinshausen N., Hambly B. M., “Monte {C}arlo methods for the valuation of multiple-exercise options”, Mathem. Finance, 14:4 (2004), 557–583 | DOI | MR | Zbl
[20] Ormoneit D., Glynn P., “Kernel-based reinforcement learning”, Machine Learning, 49:2–3 (2002), 161–178 | DOI | Zbl
[21] Ormoneit D., Glynn P., “Kernel-based reinforcement learning in average-cost problems”, IEEE Transactions in Automatic Control, 47:10 (2002), 1624–1636 | DOI | MR
[22] Powell W. B., Approximate Dynamic Programming: Solving the Curses of Dimensionality, Wiley, New York, 2007, 656 pp. | MR | Zbl
[23] Puterman M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, New York, 1994, 649 pp. | MR | Zbl
[24] Rogers L. C. G., “{M}onte {C}arlo valuation of {A}merican options”, Mathem. Finance, 12:13 (2002), 271–286 | DOI | MR | Zbl
[25] Rogers L. C. G., “Pathwise stochastic optimal control”, SIAM J. Control Optimisation, 46:3 (2007), 1116–1132 | DOI | MR | Zbl
[26] Schoenmakers J., “A pure martingale dual for multiple stopping”, Finance and Stochastics, 16:2 (2012), 319–334 | DOI | MR | Zbl
[27] Stentoft L., “Convergence of the least squares {M}onte {C}arlo approach to {A}merican option valuation”, Management Science, 50:9 (2001), 576–611
[28] Tsitsiklis J. N., Van Roy B., “Regression methods for pricing complex {A}merican-style options”, IEEE Transactions on Neural Networks, 12:4 (2001), 694–703 | DOI | MR
[29] Tsitsiklis J. N., Van Roy B., “Optimal stopping of {M}arkov processes: Hilbert space, theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives”, IEEE Transactions on Automatic Control, 44:10 (1999), 1840–1851 | DOI | MR | Zbl