@article{TVP_2015_60_4_a4,
author = {M. R\'asonyi and J. G. Rodriguea-Villareal},
title = {Optimal investment under behavioral criteria in incomplete diffusion market models},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {720--739},
year = {2015},
volume = {60},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a4/}
}
TY - JOUR AU - M. Rásonyi AU - J. G. Rodriguea-Villareal TI - Optimal investment under behavioral criteria in incomplete diffusion market models JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2015 SP - 720 EP - 739 VL - 60 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a4/ LA - ru ID - TVP_2015_60_4_a4 ER -
M. Rásonyi; J. G. Rodriguea-Villareal. Optimal investment under behavioral criteria in incomplete diffusion market models. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 4, pp. 720-739. http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a4/
[1] Cuchiero C., Teichmann J., A convergence result in the {E}mery topology and a variant of the proof of the fundamental theorem of asset pricing, Preprint, 2014, arXiv: 1406.4301
[2] De Donno M., Guasoni P., Pratelli M., “Super-replication and utility maximization in large financial markets”, Stochastic Process.Appl., 115:12 (2005), 2006–2022 | DOI | MR | Zbl
[3] De Donno M., Pratelli M., “Stochastic integration with respect to a sequence of semimartingales”, Lecture Notes in Math., 1874, 2006, 119–135 | DOI | MR | Zbl
[4] De Donno M., Pratelli M., “On a lemma by {A}nsel and {S}tricker”, Lecture Notes in Math., 1899, 2007, 411–414 | DOI | Zbl
[5] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl
[6] Emery M., “Une topologie sur l'espace des semimartingales”, Lecture Notes in Math., 721, 1979, 260–280 | DOI | MR | Zbl
[7] Ingersoll J., Theory of Financial Decision Making, Rowman Littlefield Publishers, Lanham, 1987, 474 pp.
[8] Kabanov Y. M., “On the {FTAP} of {K}reps–{D}elbaen–{S}chachermayer.”, In Statistics and Control of Stochastic Processes ({M}oscow, 1995/1996), World Scientific Publishers, River Edge, NJ, 1997, 191–203 | MR | Zbl
[9] Kabanov Yu. M., Kramkov D. O., “Bolshie finansovye rynki: asimptoticheskii arbitrazh i kontigualnost”, Teoriya veroyatn.i primen., 39:1 (1994), 222–229 | MR | Zbl
[10] Kabanov Y. M., Kramkov D. O., “Asymptotic arbitrage in large financial markets”, Finance Stoch., 2:2 (1998), 143–172 | DOI | MR | Zbl
[11] Karatzas I., Kardaras C., “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl
[12] Kardaras C., “On the closure in the {E}mery topology of semimartingale wealth-process sets”, Ann. Appl. Probab., 23:4 (2013), 1355–1376 | DOI | MR | Zbl
[13] Klein I., “A fundamental theorem of asset pricing for large financial markets”, Math. Finance, 10:4 (2000), 443–458 | DOI | MR | Zbl
[14] Teor. Veroyatnost. i Primenen., 41:4 (1996), 927–934 | DOI | MR | Zbl
[15] Klein I., Schmidt T., Teichmann J., When roll-overs do not qualify as numéraire: bond markets beyond short rate paradigms, preprint, 2013, arXiv: 1310.0032
[16] Kreps D. M., “Arbitrage and equilibrium in economies with infinitely many commodities”, J. Math. Econom., 8:1 (1981), 15–35 | DOI | MR | Zbl
[17] Mémin J., “Espaces de semi martingales et changements de probabilité”, Z. Wahrscheinlichkeitstheor. verw. Geb., 52:1 (1980), 9–39 | DOI | MR
[18] Mémin J., Słominski L., “Condition {UT} et stabilité en loi des solutions d'équations différentielles stochastiques”, Séminaire de probabilités de Strasbourg, 25 (1991), 162–177
[19] Schaefer H. H., Wolff M. P., Topological vector spaces, Springer-Verlag, New York, 1999, 346 pp. | MR | Zbl
[20] Yan J. A., “Caractérisation d'une classe d'ensembles convexes de $\footnotesize L^{1}$ ou $\footnotesize H^{1}$”, Lecture Notes in Math., 784, 1980, 220–222 | DOI | MR | Zbl