BSDEs driven by multi-dimensional martingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 4, pp. 686-719 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2015_60_4_a3,
     author = {T. Nie and M. Rutkowski},
     title = {BSDEs driven by multi-dimensional martingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {686--719},
     year = {2015},
     volume = {60},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a3/}
}
TY  - JOUR
AU  - T. Nie
AU  - M. Rutkowski
TI  - BSDEs driven by multi-dimensional martingales
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2015
SP  - 686
EP  - 719
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a3/
LA  - ru
ID  - TVP_2015_60_4_a3
ER  - 
%0 Journal Article
%A T. Nie
%A M. Rutkowski
%T BSDEs driven by multi-dimensional martingales
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2015
%P 686-719
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a3/
%G ru
%F TVP_2015_60_4_a3
T. Nie; M. Rutkowski. BSDEs driven by multi-dimensional martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 4, pp. 686-719. http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a3/

[1] Asmussen S., Albrecher H., Ruin Probabilities, World Scientific, Singapore, 2010, 602 pp. | MR | Zbl

[2] Belkina T., “Risky investments for insurers and sufficiency theorems for the survival probability”, Markov Processes Relat. Fields, 20:3 (2014), 505–525 | MR | Zbl

[3] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya kraevaya zadacha dlya integrodifferentsialnogo uravneniya v modeli strakhovaniya so sluchainymi premiyami: analiz i chislennoe reshenie”, Zh. vychisl. matem. i matem. fiz., 5:10 (2012), 1812–1846 | MR

[4] Belkina T., Konyukhova N., Kurochkin S., “Singular problems for integro-differential equations in dynamic insurance models”, Proc. Intern. Conf. on Differential and Difference Equations and Applications (in honour of Prof. Ravi P. Agarval), Springer Proceedings in Mathematics, Springer, New York, 2013, 27–44 | DOI | MR | Zbl

[5] Barles G., Chasseigne E., Imbert C., “The Dirichlet problem for second-order elliptic integro-differential equations”, Indiana Univ. Math. J., 57:1 (2008), 213–146 | DOI | MR

[6] Barles G., Imbert C., “Second-order elliptic integro-differential equations: viscosity solutions' theory revisited”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 25:3 (2008), 567–585 | DOI | MR | Zbl

[7] Crandall M., Ishii H., Lions P.-L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl

[8] De Vallière D., Kabanov Yu., Lépinette E., “onsumption-investment problem with transaction costs for Lévy-driven price processes”, Finance Stoch. (to appear)

[9] Fleming W., Soner H. M., Controlled Markov Processes and Viscosity Solutions, Springer, Berlin, 1993, 406 pp. | MR | Zbl

[10] Frolova A., Kabanov Yu., Pergamenshchikov S., “In the insurance business risky investments are dangerous”, Finance Stoch., 6:2 (2002), 227–235 | DOI | MR | Zbl

[11] Gaier J., Grandits P., “Ruin probabilities and investment under interest force in the presence of regularly varying tails”, Scand. Actuar. J., 4 (2004), 256–278 | DOI | MR | Zbl

[12] Grandits P., “A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market”, Insurance Math. Econ., 34:2 (2004), 297–305 | DOI | MR | Zbl

[13] Kabanov Yu., Pergamenshchikov S., “In the insurance business risky investments are dangerous: the case of negative risk sums”, Finance Stoch. (to appear) | MR

[14] Paulsen J., Gjessing H. K., “Ruin theory with stochastic return on investments”, Adv. Appl. Probab., 29:4 (1997), 965–985 | DOI | MR | Zbl

[15] Soner H. M., “Optimal control of jump-Markov processes and viscosity solutions”, IMA Vols. Math. Appl., 10 (1986), 501–511 | DOI | MR

[16] Wang G., Wu R., “Distributions for the risk process with a stochastic return on investments”, Stoch. Process. Appl., 95 (2001), 329–341 | DOI | MR | Zbl