Existence and uniqueness of Arrow–Debreu equilibria with consumptions in $\bf L^0_+$
Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 4, pp. 819-827 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2015_60_4_a10,
     author = {D. O. Kramkov},
     title = {Existence and uniqueness of {Arrow{\textendash}Debreu} equilibria with consumptions in $\bf L^0_+$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {819--827},
     year = {2015},
     volume = {60},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a10/}
}
TY  - JOUR
AU  - D. O. Kramkov
TI  - Existence and uniqueness of Arrow–Debreu equilibria with consumptions in $\bf L^0_+$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2015
SP  - 819
EP  - 827
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a10/
LA  - ru
ID  - TVP_2015_60_4_a10
ER  - 
%0 Journal Article
%A D. O. Kramkov
%T Existence and uniqueness of Arrow–Debreu equilibria with consumptions in $\bf L^0_+$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2015
%P 819-827
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a10/
%G ru
%F TVP_2015_60_4_a10
D. O. Kramkov. Existence and uniqueness of Arrow–Debreu equilibria with consumptions in $\bf L^0_+$. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 4, pp. 819-827. http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a10/

[1] Berdjane B., Pergamenshchikov S., “Optimal consumption and investment for markets with random coefficients”, Finance Stoch., 17:2 (2013), 419–446 | DOI | MR | Zbl

[2] Castañeda-Leyva N., Hernández-Hernández D., “Optimal consumption-investment problems in incomplete markets with stochastic coefficients”, SIAM J. Control Optim., 44:4 (2005), 1322–1344 | DOI | MR | Zbl

[3] Delarue F., “On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case”, Stochastic Process.Appl., 99:2 (2002), 209–286 | DOI | MR | Zbl

[4] Delong L., Klüppelberg C., “Optimal investment and consumption in a {B}lack–{S}choles market with {L}évy-driven stochastic coefficients”, Ann. Appl. Probab., 18:3 (2008), 879–908 | DOI | MR | Zbl

[5] Fleming W., Hernández-Hernández D., “An optimal consumption model with stochastic volatility”, Finance Stoch., 7:2 (2003), 245–262 | DOI | MR | Zbl

[6] Fleming W., Rishel R., Deterministic and Stochastic Optimal Control, Appl. Math., 1, Springer-Verlag, Berlin, 1975, 222 pp. | MR | Zbl

[7] Fouque J.P., Papanicolaou G., Sircar R., Derivatives in Financial Markets with Stochastic Volatility, Cambridge Univ.Press, Cambridge, 2000, 201 pp. | MR | Zbl

[8] Freidlin M. I., Functional Integration and Partial Differential Equations, Ann. Math. Stud., 109, Princeton Univ.Press, Princeton, 1985 | MR | Zbl

[9] Hernández-Hernández D., Schied A., “Robust utility maximization in a stochastic factor model”, Statist. Decisions, 24:1 (2006), 109–125 | MR | Zbl

[10] Jackwerth J., Rubinstein M., “Recovering probability distributions from option prices”, J. Finance, 51:5 (1996), 1611–1631 | DOI

[11] Kabanov Yu. M., Pergamenshchikov S. M., Two-Scale Stochastic Systems. Asymptotic Analysis and Control, Appl. Math., 49, Springer-Verlag, Berlin, 2003 | MR | Zbl

[12] Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, Springer, New York, 1991, 470 pp. | MR | Zbl

[13] Karatzas I., Shreve S. E., Methods of Mathematical Finance, Springer, Berlin, 1998, 407 pp. | MR | Zbl

[14] Konev V., Pergamenshchikov S., “On truncated sequential estimation of the parameters of diffusion processes”, Methods of Economical Analysis, Ed. by S. Aivazian, Central Economical and Mathematical Institute of Russian Academy of Science, Moscow, 1992, 3–31

[15] Korn R., Optimal Portfolios, World Scientific, Singapore, 1997, 338 pp. | Zbl

[16] Kraft H., Steffensen M., “Portfolio problems stopping at first hitting time with application to default risk”, Math.Methods Oper.Res., 63:1 (2006), 123–150 | DOI | MR | Zbl

[17] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[18] Liptser R. S., Shiryaev A. N., Statistics of Random Process. I: General Theory, Springer-Verlag, Berlin, 2001, 427 pp. | MR

[19] Liptser R. S., Shiryaev A. N., Statistics of Random Process. II: Applications, Springer-Verlag, Berlin, 2001, 402 pp. | MR

[20] Bardi M., Cesaroni A., Manca L., “Convergence by viscosity methods in multiscale financial models with stochastic volatility”, SIAM J. Financial Math., 1 (2010), 230–265 | DOI | MR | Zbl

[21] Ma J., Protter P., Yong J., “Solving forward-backward stochastic differential equations explicitly —a four step scheme”, Probab. Theory Related Fields, 98:3 (1994), 339–359 | DOI | MR | Zbl

[22] Merton R., “Optimal consumption and portfolio rules in a continuous time model”, J. Econom. Theory, 3:4 (1971), 373–413 | DOI | MR | Zbl

[23] Novikov A. A., “Posledovatelnoe otsenivanie parametrov diffuzionnykh protsessov. (Rezyume doklada, sdelannogo na zasedanii seminara po teorii veroyatnostei i matematicheskoi statistike v Matematicheskom institute Akademii nauk SSSR.)”, Teoriya veroyatn. i ee primen., 16:2 (1971), 394–396 | Zbl

[24] Pazy A., Demigroups in Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer, New York, 1983 | MR

[25] Pham H., “Smooth solutions to optimal investment models with stochastic volatilities and portofolio constraints”, Appl. Math. Optim., 46:1 (2002), 55–78 | DOI | MR | Zbl

[26] Presman E. L., Sethi S. P., “Risk-aversion behavior in consumption/investment problems”, Math. Finance, 1:1 (1991), 100–124 | DOI | MR | Zbl

[27] Rogers L. C. G., Optimal Investment, Springer Briefs Quant. Finance, Springer-Verlag, Berlin, 2013 | MR | Zbl

[28] Rubinstein M., “Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option classes from August 23, 1976 through August 31, 1976”, J. Finance, 40:2 (1985), 455–480 | DOI

[29] Sethi S. P., Taksar M. I., Presman E. L., “Explicit solution of a general consumption/portfolio problem with subsistence consumption and bankruptcy”, J. Econom. Dynam. Control, 16:3–4 (1992), 747–768 | DOI | MR | Zbl

[30] Sircar R., Zariphopoulou T., “Bounds and asymptotic approximations for utility prices when volatility is random”, SIAM J. Control Optim., 43:4 (2005), 1328–1353 | DOI | MR | Zbl

[31] Zariphopoulou T., “A solution approach to valuation with unhedgeable risks”, Finance Stoch., 5:1 (2001), 61–82 | DOI | MR | Zbl