@article{TVP_2015_60_4_a1,
author = {B. Berdjane and S. M. Pergamenshchikov},
title = {Sequential $\delta$-optimal consumption and investment for stochastic volatility markets with unknown parameters},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {628--659},
year = {2015},
volume = {60},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a1/}
}
TY - JOUR AU - B. Berdjane AU - S. M. Pergamenshchikov TI - Sequential $\delta$-optimal consumption and investment for stochastic volatility markets with unknown parameters JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2015 SP - 628 EP - 659 VL - 60 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a1/ LA - ru ID - TVP_2015_60_4_a1 ER -
%0 Journal Article %A B. Berdjane %A S. M. Pergamenshchikov %T Sequential $\delta$-optimal consumption and investment for stochastic volatility markets with unknown parameters %J Teoriâ veroâtnostej i ee primeneniâ %D 2015 %P 628-659 %V 60 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a1/ %G ru %F TVP_2015_60_4_a1
B. Berdjane; S. M. Pergamenshchikov. Sequential $\delta$-optimal consumption and investment for stochastic volatility markets with unknown parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 4, pp. 628-659. http://geodesic.mathdoc.fr/item/TVP_2015_60_4_a1/
[1] Barlow M., Émery M., Knight F., Song S., Yor M., “Autour d'un théorème de Tsirelson sur des filtrations browniennes et non browniennes”, Lecture Notes in Math., 1686, 1998, 264–305 | DOI | MR | Zbl
[2] Bernoulli D., “Exposition of a new theory on the measurement of risk”, Econometrica, 22 (1954), 23–36 | DOI | MR | Zbl
[3] Berkelaar A. B., Kouwenberg R., Post T., “Optimal portfolio choice under loss aversion”, Rev. Econ. Stat., 86:4 (2004), 973–987 | DOI
[4] Black F., “Studies of stock market volatility changes”, Proc. Amer. Statist. Assoc., Business and Economic Statistics Section, 1976, 177–181
[5] Campi L., Del Vigna M., “Weak insider trading and behavioral finance”, SIAM J. Financial Math., 3 (2012), 242–279 | DOI | MR | Zbl
[6] Carassus L., Rásonyi M., “On optimal investment for a behavioral investor in multiperiod incomplete market models”, Math. Finance, 25:1 (2015), 115–153 | DOI | MR | Zbl
[7] Carlier G., Dana R.-A., “Optimal demand for contingent claims when agents have law invariant utilities”, Math. Finance, 21:2 (2011), 169–201 | MR | Zbl
[8] Cherny A., Madan D., “New measures for performance evaluation”, Rev. Financ. Stud., 22:7 (2009), 2571–2606 | DOI
[9] Fouque J.-P., Papanicolaou G., Sircar R., Derivatives in Financial Markets with Stochastic Volatility, Cambridge Univ.Press, Cambridge, 2000, 201 pp. | MR | Zbl
[10] Jin H., Zhou X. Y., “Behavioural portfolio selection in continuous time”, Math. Finance, 18:3 (2008), 385–426 | DOI | MR | Zbl
[11] Kahneman D., Tversky A., “Prospect theory: an analysis of decision under risk”, Econometrica, 47 (1979), 263–291 | DOI | Zbl
[12] Krylov N. V., “A supermartingale characterization of sets of stochastic integrals and applications”, Probab. Theory Related Fields, 123:4 (2002), 521–552 | DOI | MR | Zbl
[13] Krylov N. V., Liptser R., “On diffusion approximation with discontinuous coefficients”, Stochastic Process. Appl., 102:2 (2002), 235–264 | DOI | MR | Zbl
[14] Quiggin J., “A theory of anticipated utility”, J. Economic and Behavioral Organization, 3 (1982), 323–343 | DOI
[15] Rásonyi M., Rodrigues A. M., “Optimal portfolio choice for a behavioural investor in continuous-time markets”, Ann. Finance, 9:2 (2013), 291–318 | DOI | MR
[16] Reichlin C., “Utility maximization with a given pricing measure when the utility is not necessarily concave”, Math. Financ. Econ., 7:4 (2013), 531–556 | DOI | MR | Zbl
[17] Reichlin C., Non-concave utility maximization: optimal investment, stability and applications, Ph.D. Thesis, Diss. ETH No20749, ETH Zürich, 2012
[18] Tversky A., Kahneman D., “Advances in prospect theory: Cumulative representation of uncertainty”, J. Risk Uncertainty, 5:4 (1992), 297–323 | DOI | Zbl
[19] fon Neiman D., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970, 707 pp. | MR