@article{TVP_2015_60_3_a4,
author = {B. P. Harlamov},
title = {Final distribution of diffusion process: {semi-Markov} approach},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {506--524},
year = {2015},
volume = {60},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_3_a4/}
}
B. P. Harlamov. Final distribution of diffusion process: semi-Markov approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 3, pp. 506-524. http://geodesic.mathdoc.fr/item/TVP_2015_60_3_a4/
[1] Borodin A. N., Salminen P., Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000, 639 pp.
[2] Dynkin E. B., Markovskie protsessy, Fizmatlit, M., 1963, 859 pp. | MR
[3] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968, 394 pp.
[4] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971, 576 pp. | MR
[5] Korolyuk V. S., Turbin A. F., Polumarkovskie protsessy i ikh prilozheniya, Naukova dumka, Kiev, 1976, 184 pp. | MR
[6] Kharlamov B. P., Nepreryvnye polumarkovskie protsessy, Nauka, SPb., 2001, 431 pp. | MR
[7] Kharlamov B. P., “Diffuzionnyi protsess s zaderzhkoi na granitsakh otrezka”, Zap. nauch. sem. POMI, 351 (2007), 284–297 | MR
[8] Kharlamov B. P., “O markovskom diffuzionnom protsesse s zamedlennym otrazheniem na granitse intervala”, Zap. nauch. sem. POMI, 368 (2009), 243–267 | MR
[9] Kharlamov B. P., “O tochkakh zaderzhki i asimmetrii odnomernogo polumarkovskogo diffuzionnogo protsessa”, Zap. nauch. sem. POMI, 384 (2010), 291–309 | MR
[10] Rasova S. S., Kharlamov B. P., “O dvizhenii brounovskikh chastits vdol zaderzhivayuschego ekrana”, Zap. nauch. sem. POMI, 396 (2011), 175–194 | MR
[11] Harlamov B. P., Continuous Semi-Markov Processes, ISTE/Wiley, London/Hoboken, 2008, 375 pp. | MR | Zbl
[12] Harlamov B. P., “Stochastic model of gas capillary chromatography”, Comm. Statist. Simulation Comput., 41:7 (2012), 1023–1031 | DOI | MR | Zbl