Final distribution of diffusion process: semi-Markov approach
Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 3, pp. 506-524 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2015_60_3_a4,
     author = {B. P. Harlamov},
     title = {Final distribution of diffusion process: {semi-Markov} approach},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {506--524},
     year = {2015},
     volume = {60},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_3_a4/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - Final distribution of diffusion process: semi-Markov approach
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2015
SP  - 506
EP  - 524
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2015_60_3_a4/
LA  - ru
ID  - TVP_2015_60_3_a4
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T Final distribution of diffusion process: semi-Markov approach
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2015
%P 506-524
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2015_60_3_a4/
%G ru
%F TVP_2015_60_3_a4
B. P. Harlamov. Final distribution of diffusion process: semi-Markov approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 3, pp. 506-524. http://geodesic.mathdoc.fr/item/TVP_2015_60_3_a4/

[1] Borodin A. N., Salminen P., Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000, 639 pp.

[2] Dynkin E. B., Markovskie protsessy, Fizmatlit, M., 1963, 859 pp. | MR

[3] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968, 394 pp.

[4] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971, 576 pp. | MR

[5] Korolyuk V. S., Turbin A. F., Polumarkovskie protsessy i ikh prilozheniya, Naukova dumka, Kiev, 1976, 184 pp. | MR

[6] Kharlamov B. P., Nepreryvnye polumarkovskie protsessy, Nauka, SPb., 2001, 431 pp. | MR

[7] Kharlamov B. P., “Diffuzionnyi protsess s zaderzhkoi na granitsakh otrezka”, Zap. nauch. sem. POMI, 351 (2007), 284–297 | MR

[8] Kharlamov B. P., “O markovskom diffuzionnom protsesse s zamedlennym otrazheniem na granitse intervala”, Zap. nauch. sem. POMI, 368 (2009), 243–267 | MR

[9] Kharlamov B. P., “O tochkakh zaderzhki i asimmetrii odnomernogo polumarkovskogo diffuzionnogo protsessa”, Zap. nauch. sem. POMI, 384 (2010), 291–309 | MR

[10] Rasova S. S., Kharlamov B. P., “O dvizhenii brounovskikh chastits vdol zaderzhivayuschego ekrana”, Zap. nauch. sem. POMI, 396 (2011), 175–194 | MR

[11] Harlamov B. P., Continuous Semi-Markov Processes, ISTE/Wiley, London/Hoboken, 2008, 375 pp. | MR | Zbl

[12] Harlamov B. P., “Stochastic model of gas capillary chromatography”, Comm. Statist. Simulation Comput., 41:7 (2012), 1023–1031 | DOI | MR | Zbl