@article{TVP_2015_60_2_a2,
author = {A. A. Gushchin and M. A. Urusov},
title = {Processes that can be embedded in a geometric {Brownian} motion},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {248--271},
year = {2015},
volume = {60},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a2/}
}
A. A. Gushchin; M. A. Urusov. Processes that can be embedded in a geometric Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 2, pp. 248-271. http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a2/
[1] Acciaio B., Beiglböck M., Penkner F., Schachermayer W., Temme J., “A trajectorial interpretation of Doob's martingale inequalities”, Ann. Appl. Probab., 23:4 (2013), 1494–1505 | DOI | MR | Zbl
[2] Ané T., Geman H., “Order flow, transaction clock, and normality of asset returns”, J. Finance, 55:5 (2000), 2259–2284 | DOI
[3] Ankirchner S., Heyne G., Imkeller P., “A BSDE approach to the Skorokhod embedding problem for the Brownian motion with drift”, Stoch. Dyn., 8:1 (2008), 35–46 | DOI | MR | Zbl
[4] Ankirchner S., Hobson D. G., Strack P., “Finite, integrable and bounded time embeddings for diffusions”, Bernoulli, 21:2 (2015), 1067–1088 | DOI | MR | Zbl
[5] Ankirchner S., Strack P., “Skorokhod embeddings in bounded time”, Stoch. Dyn., 11:2–3 (2011), 215–226 | DOI | MR | Zbl
[6] Barndorff-Nielsen O. E., Shiryaev A., Change of Time and Change of Measure, World Scientific, Hackensack, NJ, 2010, 305 pp. | MR | Zbl
[7] Baxter J. R., Chacon R. V., “Enlargement of $\sigma$-algebras and compactness of time changes”, Canad. J. Math., 29:5 (1977), 1055–1065 | DOI | MR | Zbl
[8] Beiglböck M., Henry-Labordère P., Penkner F., “Model-independent bounds for option prices — a mass transport approach”, Finance Stoch., 17:3 (2013), 477–501 | DOI | MR | Zbl
[9] Birnbaum A., “On the foundations of statistical inference: binary experiments”, Ann. Math. Statist., 32 (1961), 414–435 | DOI | MR | Zbl
[10] Brown H., Hobson D. G., Rogers L. C. G., “Robust hedging of barrier options”, Math. Finance, 11:3 (2001), 285–314 | DOI | MR | Zbl
[11] Cox A. M. G., “Extending Chacon–Walsh: minimality and generalised starting distributions”, Séminaire de Probabilités XLI, Lecture Notes in Math., 1934, 2008, 233–264 | DOI | MR | Zbl
[12] Cox A. M. G., Hobson D. G., “An optimal Skorokhod embedding for diffusions”, Stochastic Process. Appl., 111:1 (2004), 17–39 | DOI | MR | Zbl
[13] Cox A. M. G., Hobson D. G., “Skorokhod embeddings, minimality and non-centred target distributions”, Probab. Theory Related Fields, 135:3 (2006), 395–414 | DOI | MR | Zbl
[14] Cox A. M. G., Hobson D. G., Obłój J., “Pathwise inequalities for local time: applications to Skorokhod embeddings and optimal stopping”, Ann. Appl. Probab., 18:5 (2008), 1870–1896 | DOI | MR | Zbl
[15] Cox A. M. G., Obłój J., “Robust hedging of double touch barrier options”, SIAM J. Financial Math., 2:1 (2011), 141–182 | DOI | MR | Zbl
[16] Cox A. M. G., Obłój J., “Robust pricing and hedging of double no-touch options”, Finance Stoch., 15:3 (2011), 573–605 | DOI | MR | Zbl
[17] Cox A. M. G., Wang J., “Root's barrier: construction, optimality and applications to variance options”, Ann. Appl. Probab., 23:3 (2013), 859–894 | DOI | MR | Zbl
[18] Dolinsky Y., Soner H. M., “Martingale optimal transport and robust hedging in continuous time”, Probab. Theory Related Fields, 160:1–2 (2014), 391–427 | DOI | MR | Zbl
[19] Grandits P., Falkner N., “Embedding in Brownian motion with drift and the Azéma–Yor construction”, Stochastic Process. Appl., 85:2 (2000), 249–254 | DOI | MR | Zbl
[20] Gushchin A, Urusov M., Zervos M., “On the submartingale/supermartingale property of diffusions in natural scale”, Trudy Matematicheskogo instituta im. V. A. Steklova, 287, 2014, 129–139 | DOI
[21] Hall W. J., “Embedding submartingales in Wiener processes with drift, with applications to sequential analysis”, J. Appl. Probability, 6 (1969), 612–632 | DOI | MR | Zbl
[22] Hobson D. G., “Robust hedging of the lookback option”, Finance Stoch., 2:4 (1998), 329–347 | DOI | Zbl
[23] Hobson D. G., “The Skorokhod embedding problem and model-independent bounds for option prices”, Paris–Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., 2003, 2011, 267–318 | DOI | MR | Zbl
[24] Karatzas I., Kardaras C., “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl
[25] Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991 | MR | Zbl
[26] Kotani S., “On a condition that one-dimensional diffusion processes are martingales”, In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX, Lecture Notes in Math., 1874, 2006, 149–156 | DOI | MR | Zbl
[27] Kramkov D., Schachermayer W., “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl
[28] Monroe I., “On embedding right continuous martingales in Brownian motion”, Ann. Math. Statist., 43 (1972), 1293–1311 | DOI | MR | Zbl
[29] Monroe I., “Processes that can be embedded in Brownian motion”, Ann. Probab., 6:1 (1978), 42–56 | DOI | MR | Zbl
[30] Obłój J., “The Skorokhod embedding problem and its offspring”, Probab. Surv., 1 (2004), 321–390 | DOI | MR
[31] Obłój J., On Some Aspects of Skorokhod Embedding Problem and its Applications in Mathematical Finance, Lecture Notes, , 2014 http://people.maths.ox.ac.uk/obloj/LectureNotes_v4.pdf
[32] Obłój J., Ulmer F., “Performance of robust hedges for digital double barrier options”, Int. J. Theor. Appl. Finance, 15:1 (2012), 1250003, 34 pp. | DOI | MR | Zbl
[33] Pedersen J. L., Peskir G., “The Azéma–Yor embedding in non-singular diffusions”, Stochastic Process. Appl., 96:2 (2001), 305–312 | DOI | MR | Zbl
[34] Peskir G., “The Azéma–Yor embedding in Brownian motion with drift”, High dimensional probability, II (Seattle, WA, 1999), Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000, 207–221 | MR | Zbl
[35] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer, Berlin, 1999, 602 pp. | MR | Zbl
[36] Skorokhod A. V., Studies in the Theory of Random Processes, Addison-Wesley, Reading, MA, 1965, 199 pp. | MR | Zbl
[37] Skorokhod A. V., Issledovaniya po teorii sluchainykh protsessov (stokhasticheskie differentsialnye uravneniya i predelnye teoremy dlya protsessov Markova), Kievskii gos. un-t, Kiev, 1961
[38] Shiryaev A. N., Veroyatnost, V 2-kh kn., MTsNMO, M., 2004, 520 pp.; 408 с.