Tauberian theorem for generating functions of multiple series
Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 2, pp. 410-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2015_60_2_a13,
     author = {A. L. Yakymiv},
     title = {Tauberian theorem for generating functions of multiple series},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {410--415},
     year = {2015},
     volume = {60},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a13/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - Tauberian theorem for generating functions of multiple series
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2015
SP  - 410
EP  - 415
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a13/
LA  - ru
ID  - TVP_2015_60_2_a13
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T Tauberian theorem for generating functions of multiple series
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2015
%P 410-415
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a13/
%G ru
%F TVP_2015_60_2_a13
A. L. Yakymiv. Tauberian theorem for generating functions of multiple series. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 2, pp. 410-415. http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a13/

[1] Abel N. H., “Untersuchungen über die Reihe: $1+\frac{m}{1}\cdot x+\frac{m\cdot(m-1)}{1\cdot 2}\cdot x^2+ \frac{m\cdot(m-1)\cdot(m-2)}{1\cdot 2\cdot 3}\cdot x^3+\cdots$ u.s.w.”, J. Reine Angew. Math., 1 (1826), 311–339 | DOI | MR | Zbl

[2] Vatutin V. A., “Diskretnye predelnye raspredeleniya chisla chastits v kriticheskikh vetvyaschikhsya protsessakh Bellmana–Kharrisa”, Teoriya veroyatn. i ee primen., 22:1 (1977), 150–155 | MR | Zbl

[3] Vatutin V. A., “Kriticheskii vetvyaschiisya protsess Galtona–Vatsona s emigratsiei”, Teoriya veroyatn. i ee primen., 22:3 (1977), 482–497 | MR

[4] Vatutin V. A., “Diskretnye predelnye raspredeleniya chisla chastits v vetvyaschisya protsessakh Bellmana–Kharrisa s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 24:3 (1979), 503–514 | MR | Zbl

[5] Vatutin V. A., Sagitov S. M., “Razlozhimyi kriticheskii vetvyaschiisya protsess s dvumya tipami chastits, I”, Teoriya veroyatn. i ee primen., 33:3 (1988), 495–507 | MR

[6] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986, 304 pp.

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Per. so 2-go angl. izd. Yu. V. Prokhorova, v. 1, Mir, M., 1984, 528 pp.

[8] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Per. so 2-go angl. izd. Yu. V. Prokhorova, v. 2, Mir, M., 1984, 752 pp.

[9] Karamata J., “Über die Hardy–Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes”, Math. Z., 32 (1930), 319–320 | DOI | MR | Zbl

[10] Karamata J., “Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze”, Math. Z., 33:2 (1931), 294–299 | DOI | MR

[11] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.

[12] Sevastyanov B. A., “Vetvyaschiesya protsessy, ogranichennye snizu”, Dokl. AN SSSR, 238:4 (1978), 811–813 | MR | Zbl

[13] Tauber A., “Ein Satz aus der Theorie der unendichen Reihen”, Monatsch. Math., 8 (1897), 273–277 | DOI | MR | Zbl

[14] Yakymiv A. L., “Mnogomernye tauberovy teoremy i ikh primenenie k vetvyaschimsya protsessam Bellmana–Kharrisa”, Matem. sb., 115:3 (1981), 463–477 | MR | Zbl

[15] Yakymiv A. L., Veroyatnostnye prilozheniya tauberovykh teorem, Fizmatlit, M., 2005, 256 pp.

[16] Yakymiv A. L., “Predelnaya teorema dlya obschego chisla tsiklov sluchainoi $A$-podstanovki”, Teoriya veroyatn. i ee primen., 52:1 (2007), 69–83 | DOI

[17] Yakymiv A. L., “Predelnaya teorema dlya logarifma poryadka sluchainoi $A$-podstanovki”, Diskret. matem., 22:1 (2010), 126–149 | DOI | MR | Zbl

[18] Yakymiv A. L., “O chisle komponent sluchainogo $A$-otobrazheniya”, Teoriya veroyatn. i ee primen., 59:1 (2014), 81–96 | DOI | Zbl