On one model of sub- and superdiffusion on topological spaces with a self-similar structure
Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 2, pp. 209-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2015_60_2_a0,
     author = {N. S. Arkashov and V. A. Seleznev},
     title = {On one model of sub- and superdiffusion on topological spaces with a self-similar structure},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--226},
     year = {2015},
     volume = {60},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a0/}
}
TY  - JOUR
AU  - N. S. Arkashov
AU  - V. A. Seleznev
TI  - On one model of sub- and superdiffusion on topological spaces with a self-similar structure
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2015
SP  - 209
EP  - 226
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a0/
LA  - ru
ID  - TVP_2015_60_2_a0
ER  - 
%0 Journal Article
%A N. S. Arkashov
%A V. A. Seleznev
%T On one model of sub- and superdiffusion on topological spaces with a self-similar structure
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2015
%P 209-226
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a0/
%G ru
%F TVP_2015_60_2_a0
N. S. Arkashov; V. A. Seleznev. On one model of sub- and superdiffusion on topological spaces with a self-similar structure. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 2, pp. 209-226. http://geodesic.mathdoc.fr/item/TVP_2015_60_2_a0/

[1] Arkashov N. S., Seleznev V. A., “O modeli sluchainogo bluzhdaniya na mnozhestvakh s samopodobnoi strukturoi”, Sib. matem. zhurnal, 54:6 (2013), 1216–1236 | MR | Zbl

[2] Zelenyi L. M., Milovanov A. V., “Fraktalnaya topologiya i strannaya kinetika: ot teorii perkolyatsii k problemam kosmicheskoi elektrodinamiki”, Uspekhi fiz. nauk, 174:8 (2004), 819–852

[3] Zaslavskii G. M., Gamiltonov khaos i fraktalnaya dinamika, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2010, 455 pp.

[4] Uchaikin V. V., “Avtomodelnaya anomalnaya diffuziya i ustoichivye zakony”, Uspekhi fiz. nauk, 173:8 (2003), 847–876 | DOI

[5] Edgar G., Measure, Topology, and Fractal Geometry, Springer, New York, 2008, 268 pp. | MR | Zbl

[6] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975, 304 pp.

[7] Khalmosh P., Teoriya mery, Mir, M., 1953, 291 pp.

[8] Falconer K., Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 2003, 337 pp. | MR | Zbl

[9] Hutchinson J. E., “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[10] Feder E., Fraktaly, Mir, M., 1991, 260 pp.

[11] Montroll E. W., Weiss G. H., “Random walks on lattices, II”, J. Math. Phys., 6:2 (1965), 167–181 | DOI | MR

[12] Kolokoltsov V. N., “Obobschennye sluchainye bluzhdaniya v nepreryvnom vremeni (CTRW), subordinatsiya vremenami dostizheniya i drobnaya dinamika”, Teoriya veroyatn. i ee primen., 53:4 (2008), 684–703 | DOI

[13] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp.

[14] Shiryaev A. N., Veroyatnost, Nauka, M., 1980, 575 pp.