Large deviation probabilities for queuing system with regenerating input flow
Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 1, pp. 171-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2015_60_1_a9,
     author = {L. G. Afanas'eva and E. E. Bashtova},
     title = {Large deviation probabilities for queuing system with regenerating input flow},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {171--177},
     year = {2015},
     volume = {60},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a9/}
}
TY  - JOUR
AU  - L. G. Afanas'eva
AU  - E. E. Bashtova
TI  - Large deviation probabilities for queuing system with regenerating input flow
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2015
SP  - 171
EP  - 177
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a9/
LA  - ru
ID  - TVP_2015_60_1_a9
ER  - 
%0 Journal Article
%A L. G. Afanas'eva
%A E. E. Bashtova
%T Large deviation probabilities for queuing system with regenerating input flow
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2015
%P 171-177
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a9/
%G ru
%F TVP_2015_60_1_a9
L. G. Afanas'eva; E. E. Bashtova. Large deviation probabilities for queuing system with regenerating input flow. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 1, pp. 171-177. http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a9/

[1] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 367 pp. | MR

[2] Borovkov A. A., Borovkov K. A., “Veroyatnosti bolshikh uklonenii dlya obobschennykh protsesssov vosstanovleniya s pravilno menyayuschimisya raspredeleniyami skachkov”, Matem. tr., 8:2 (2005), 69–136 | MR | Zbl

[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[4] Afanasyeva L., Bashtova E., “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR | Zbl

[5] Afanasyeva L., Bashtova E., Bulinskaya E., “Limit theorems for semi-Markov queues and their applications”, Comm. Statist. Simulation Comput., 41:6 (2012), 688–709 | DOI | MR | Zbl

[6] Asmussen S., Applied Probability and Queues, Wiley, Chichester, 1987, 318 pp. | MR | Zbl

[7] Bryc W., Dembo A., “Large deviations and strong mixing”, Ann. Inst. H. Poincaré, 32:4 (1996), 549–569 | MR | Zbl

[8] Ganesh A., O'Connell N., Wischik D., “Big queues”, Lecture Notes in Math., 1838, 2004, 1–254 | MR

[9] Grandell J., “Double stochastic Poisson processes”, Lecture Notes in Math., 529, 1976, 1–234 | MR

[10] Sadowsky J. S., Szpankowski W., “The probability of large queue lengths and waiting times in a heterogeneous multiserver queue. I: Tight limits”, Adv. Appl. Probab., 27:2 (1995), 532–566 | MR | Zbl

[11] Sadowsky J. S., “The probability of large queue length and waiting times in a heterogeneous multiserver queue. II: Positive recurrence and logarithmic limits”, Adv. Appl. Probab., 27:2 (1995), 567–583 | DOI | MR | Zbl