General multiparameter version of Gnedenko's transfer theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 1, pp. 198-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2015_60_1_a12,
     author = {P. Kern},
     title = {General multiparameter version of {Gnedenko's} transfer theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {198--206},
     year = {2015},
     volume = {60},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a12/}
}
TY  - JOUR
AU  - P. Kern
TI  - General multiparameter version of Gnedenko's transfer theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2015
SP  - 198
EP  - 206
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a12/
LA  - en
ID  - TVP_2015_60_1_a12
ER  - 
%0 Journal Article
%A P. Kern
%T General multiparameter version of Gnedenko's transfer theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2015
%P 198-206
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a12/
%G en
%F TVP_2015_60_1_a12
P. Kern. General multiparameter version of Gnedenko's transfer theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 1, pp. 198-206. http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a12/

[1] Aksomaitis A., “On convergence of the maximum of dependent random variables”, Lith. Math. J., 32:1 (1992), 1–3 | DOI | MR | Zbl

[2] Aksomaitis A., “Rate of convergence in the limit transfer theorem of the maximum and minimum”, Proceedings of the Sixth Vilnius Conference on Probability Theory and Mathematical Statistics, ed. B. Grigelionis, VSP, Utrecht, 1994, 35–42 | MR | Zbl

[3] Becker-Kern P., “Stable and semistable hemigroups: Domains of attraction and self-decomposability”, J. Theoret. Probab., 16:3 (2003), 573–598 | DOI | MR | Zbl

[4] Becker-Kern P., “An almost sure limit theorem for mixtures of domains in random allocation”, Studia Sci. Math. Hungar., 44:3 (2007), 331–354 | MR | Zbl

[5] Becker-Kern P., “Almost sure limit theorems of mantissa type for semistable domains of attraction”, Acta Math. Hungar., 114:4 (2007), 301–336 | DOI | MR | Zbl

[6] Becker-Kern P., Meerschaert M. M., Scheffler H. P., “Limit theorem for continuous-time random walks with two time scales”, J. Appl. Probab., 41:2 (2004), 455–466 | MR | Zbl

[7] Bening V. E., Korolev V. Yu., Generalized Poisson Models and their Applications in Insurance and Finance, VSP, Utrecht, 2002, 434 pp. | Zbl

[8] Berman S. M., “Limiting distribution of the maximum term in sequences of dependent random variables”, Ann. Math. Statist., 33 (1962), 894–908 | MR | Zbl

[9] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp.

[10] Csörgő S., Megyesi Z., “Merging to semistable laws”, Teoriya veroyatn. i ee primen., 47:1 (2002), 90–109 | DOI | MR | Zbl

[11] Dion J. P., Yanev N. M., “Limit theorems and estimation theory for branching processes with an increasing random number of ancestors”, J. Appl. Probab., 34:2 (1997), 309–327 | MR | Zbl

[12] Dudley R. M., Real Analysis and Probability, Cambridge Univ. Press, Cambridge, 2002, 555 pp. | MR | Zbl

[13] Finkelstein M., Kruglov V. M., Tucker H. G., “Convergence in law of random sums with non-random centering”, J. Theoret. Probab., 7:3 (1994), 565–598 | DOI | MR | Zbl

[14] Gnedenko B. V., “On limit theorems for a random number of random variables”, Lecture Notes in Math., 1021, 1983, 167–176 | MR | Zbl

[15] Gnedenko B. V., Fakhim Kh., “Ob odnoi teoreme perenosa”, Dokl. AN SSSR, 187:1 (1969), 15–17 | MR | Zbl

[16] Gnedenko B. V., Korolev V. Yu., Random Summation, CRC Press, Boca Raton, 1996, 267 pp. | MR | Zbl

[17] Gut A., Stopped Random Walks, Springer, New York, 1988, 199 pp. | MR | Zbl

[18] Khatsod V., “O predelnom povedenii proizvedenii sluchainogo chisla nezavisimykh odinakovo raspredelennykh sluchainykh velichin so znacheniyami v gruppe”, Teoriya veroyatn. i ee primen., 39:2 (1994), 374–394 | MR

[19] Hazod W., Siebert E., Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups. Structural Properties and Limit Theorems, Kluwer, Dordrecht, 2001, 612 pp. | MR | Zbl

[20] Heyer H., Structural Aspects in the Theory of Probability, World Scientific, Hackensack, 2010, 412 pp. | MR | Zbl

[21] Ivchenko G. I., Medvedev Yu. I., Sevastyanov B. A., “Razmeschenie sluchainogo chisla chastits po yacheikam”, Matem. zametki, 1:5 (1967), 549–554 | MR | Zbl

[22] Joag-Dev K., Proschan F., “Negative association of random variables, with applications”, Ann. Statist., 11 (1983), 286–295 | DOI | MR | Zbl

[23] Kallenberg O., Foundations of Modern Probability, Springer, New York, 2002, 638 pp. | MR | Zbl

[24] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976, 223 pp.

[25] Korolev V. Y., Kossova E. V., “On limit distributions of randomly indexed multidimensional random sequences with operator normalization”, J. Math. Sci. (N.Y.), 72:1 (1994), 2915–2929 | MR

[26] Korolev V. Y., Kossova E. V., “Convergence of multidimensional random sequences with independent random indices”, J. Math. Sci. (N.Y.), 76:2, 2259–2268 | DOI | MR | Zbl

[27] Korolev V. Y., Kruglov V. M., “Limit theorems for random sums of independent random variables”, Lecture Notes in Math., 1546, 1993, 100–120 | MR | Zbl

[28] Kowalski P., Rychlik Z., “On the products of a random number of independent random variables”, Bull. Pol. Acad. Sci. Math., 43:3 (1995), 219–230 | MR | Zbl

[29] Meerschaert M. M., Scheffler H. P., Limit Distributions for Sums of Independent Random Vectors. Heavy Tails in Theory and Practice, Wiley, Chichester, 2001, 484 pp. | MR | Zbl

[30] Parthasarathy K. R., Probability Measures on Metric Spaces, Academic Press, London, 1967, 276 pp. | MR | Zbl

[31] Robbins H., “The asymptotic distribution of the sum of a random number of random variables”, Bull. Amer. Math. Soc., 54 (1948), 1151–1161 | MR | Zbl

[32] Siegel G., “Convergence of randomly selected sums in a separable Banach space”, Math. Nachr., 139 (1988), 139–153 | DOI | MR | Zbl

[33] Silvestrov D. S., Limit Theorems for Randomly Stopped Stochastic Processes, Springer, London, 2004, 398 pp. | MR | Zbl

[34] Thomas D. I., “On limiting distributions of a random number of dependent random variables”, Ann. Math. Statist., 43 (1972), 1719–1726 | MR | Zbl

[35] Zhang L. X., Wen J., “A weak convergence for negatively associated fields”, Statist. Probab. Lett., 53:3 (2001), 259–267 | DOI | MR | Zbl