Functional limit theorem for integrals over level sets of Gaussian random field
Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 1, pp. 186-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2015_60_1_a11,
     author = {A. P. Shashkin},
     title = {Functional limit theorem for integrals over level sets of {Gaussian} random field},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {186--198},
     year = {2015},
     volume = {60},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a11/}
}
TY  - JOUR
AU  - A. P. Shashkin
TI  - Functional limit theorem for integrals over level sets of Gaussian random field
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2015
SP  - 186
EP  - 198
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a11/
LA  - ru
ID  - TVP_2015_60_1_a11
ER  - 
%0 Journal Article
%A A. P. Shashkin
%T Functional limit theorem for integrals over level sets of Gaussian random field
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2015
%P 186-198
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a11/
%G ru
%F TVP_2015_60_1_a11
A. P. Shashkin. Functional limit theorem for integrals over level sets of Gaussian random field. Teoriâ veroâtnostej i ee primeneniâ, Tome 60 (2015) no. 1, pp. 186-198. http://geodesic.mathdoc.fr/item/TVP_2015_60_1_a11/

[1] Bulinskii A. V., Shashkin A. P., Predelnye teoremy dlya assotsiirovannykh sluchainykh polei i rodstvennykh sistem, Fizmatlit, M., 2008, 477 pp.

[2] Zaporozhets D. N., Ibragimov I. A., “O ploschadi sluchainoi poverkhnosti”, Zap. nauch. sem. POMI, 384, 2010, 154–175

[3] Meshenmozer D., Shashkin A., “Funktsionalnaya tsentralnaya predelnaya teorema dlya mery poverkhnostei urovnya gaussovskogo sluchainogo polya”, Teoriya veroyatn. i ee primen., 57:1 (2012), 168–178 | DOI

[4] Adler R. J., Taylor J. E., Random Fields and Geometry, Springer, New York, 2007, 448 pp. | MR | Zbl

[5] Azaïs J.-M., Wschebor M., Level Sets and Extrema of Random Processes and Fields, Wiley, Hoboken, 2009, 393 pp. | MR | Zbl

[6] Berman S. M., “Local times and sample functions properties of stationary Gaussian processes”, Trans. Amer. Math. Soc., 137 (1969), 277–299 | DOI | MR | Zbl

[7] Biermé H., Desolneux A., “Crossings of smooth shot noise processes”, Ann. Appl. Probab., 22:6 (2012), 2240–2281 | DOI | MR | Zbl

[8] Bulinski A., “Central limit theorem for random fields and applications”, Advances in Data Analysis, Birkhäuser, Boston, 2010, 141–150 | MR

[9] Bulinski A., Suquet Ch., “Normal approximation for quasi-associated random fields”, Statist. Probab. Lett., 54:2 (2001), 215–226 | DOI | MR | Zbl

[10] Iribarren I., “Asymptotic behaviour of the integral of a function on the level set of a mixing random field”, Probab. Math. Statist., 10:1 (1989), 45–56 | MR | Zbl

[11] Kratz M., “Level crossings and other level functionals of stationary Gaussian processes”, Probab. Surv., 3 (2006), 230–288 | DOI | MR | Zbl

[12] Shashkin A., “A functional central limit theorem for the level measure of a Gaussian random field”, Statist. Probab. Lett., 83:2 (2013), 637–643 | DOI | MR | Zbl