Maximum inequalities for rearrangements of summands and assignments of signs
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 4, pp. 800-807 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_4_a9,
     author = {S. A. Chobanyan and Sh. Levental and H. Salehi},
     title = {Maximum inequalities for rearrangements of summands and assignments of signs},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {800--807},
     year = {2014},
     volume = {59},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a9/}
}
TY  - JOUR
AU  - S. A. Chobanyan
AU  - Sh. Levental
AU  - H. Salehi
TI  - Maximum inequalities for rearrangements of summands and assignments of signs
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 800
EP  - 807
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a9/
LA  - en
ID  - TVP_2014_59_4_a9
ER  - 
%0 Journal Article
%A S. A. Chobanyan
%A Sh. Levental
%A H. Salehi
%T Maximum inequalities for rearrangements of summands and assignments of signs
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 800-807
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a9/
%G en
%F TVP_2014_59_4_a9
S. A. Chobanyan; Sh. Levental; H. Salehi. Maximum inequalities for rearrangements of summands and assignments of signs. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 4, pp. 800-807. http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a9/

[1] Kadets M. I., Kadets V. M., Series in Banach Spaces. Conditional and Unconditional Convergence, Birkhauser, Boston, 1997, 156 pp.

[2] Levental Sh., Mandrekar V. S., Chobanyan S. A., “K tereme Nikishina o perestanovochnoi skhodimosti pochti navernoe funktsionalnykh ryadov”, Funkts. analiz i ego pril., 45:1 (2011), 41–55 | DOI

[3] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984

[4] Bourgain J., “On Kolmogorov's rearrangement problem for orthogonal systems and Garsia's conjectures”, Lecture Notes Math., 1376, 1989, 209–250 | DOI

[5] Konyagin S. V., “On uniformly convergent rearrangements of trigonometric Fourier series”, J. Math. Sci., 155:1 (2008), 81–88 | DOI

[6] Révész Sz. Gy., “Rearrangement of Fourier series and Fourier series whose terms have random signs”, Acta Math. Hungar., 63:4 (1994), 395–402 | DOI

[7] Chobanyan S. A., Giorgobiani G., Tarieladze V. I., “Signs and permutations: two problems of function theory”, Proc. A Razmadze Math. Inst., 160 (2012), 25–34

[8] Sevast'yanov S. V., “On some geometric methods in scheduling theory, a survey”, Discrete Appl. Math., 55 (1994), 59–82 | DOI

[9] Kadets M. I., “Ob uslovno skhodyaschikhsya ryadakh v prostranstve $L^p$”, Uspekhi matem. nauk, 59:9 (1954), 107–109

[10] Garsia A., “Existence of almost everywhere convergent rearrangements for Fourier series of $L_2$ functions”, Ann. Math., 22 (1964), 286–309

[11] Garsia A., Topics in Almost Everywhere Convergence, Markham, Chicago, 1970

[12] Maurey B., Pisier G., “Remarques sur l'exposé de P. Assouad”, Espaces $p$-lisses, réarrangements, Séminaire Maurey–Schwartz 1974–1975, v. 1, Centre Math., École Polytech., Paris, 1975

[13] Chobanyan S. A., “Convergence a.s. of rearranged series in Banach spaces and associated inequalities”, Probability in Banach spaces 9, Proc. of 9th International Conference on Probability in Banach Spaces (Sandbjerg, 1993), Birkhäuser, Boston, MA, 1994, 3–29

[14] Chobanyan S., Salehi H., “Exact maximal inequalities for exchangeable systems of random variables”, Teoriya veroyatn. i ee primen., 45:3 (2000), 555–567 | DOI

[15] Levental S., “Permutations, signs and the Brownian bridge”, Stat. Probab. Letters, 46:3 (2000), 271–276 | DOI

[16] Levental S., “A maximal inequality for real numbers with application to exchangeable random variables”, Teoriya veroyatn. i ee primen., 45:3 (2000), 615–621 | DOI