@article{TVP_2014_59_4_a2,
author = {V. A. Vatutin},
title = {The structure of decomposable reduced branching processes. {I.} {Finitedimensional} distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {667--692},
year = {2014},
volume = {59},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a2/}
}
TY - JOUR AU - V. A. Vatutin TI - The structure of decomposable reduced branching processes. I. Finitedimensional distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2014 SP - 667 EP - 692 VL - 59 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a2/ LA - ru ID - TVP_2014_59_4_a2 ER -
V. A. Vatutin. The structure of decomposable reduced branching processes. I. Finitedimensional distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 4, pp. 667-692. http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a2/
[1] Athreya K. B., Ney P. E., Branching Processes, Springer-Verlag, Berlin–Heidelberg–New York, 1972, 287 pp.
[2] Borovkov K. A., Vatutin V. A., “Reduced critical branching processes in random environment”, Stochastic Process. Appl., 71:2 (1997), 225–240 | DOI
[3] Fleischmann K., Prehn U., “Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit endlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 357–362 | DOI
[4] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI
[5] Fleischmann K., Vatutin V. A., “Reduced subcritical Galton–Watson processes in a random environment”, Adv. Appl. Probab., 31:1 (1999), 88–111 | DOI
[6] Foster J., Ney P., “Decomposable critical multi-type branching processes”, Sankhyā A, 38:1 (1976), 28–37
[7] Foster J., Ney P., “Limit laws for decomposable critical branching processes”, Z. Wahrscheinlichkeitstheor. verw. Geb., 46:1 (1978), 13–43 | DOI
[8] Lagerås A. N., Sagitov S., “Reduced branching processes with very heavy tails”, J. Appl. Probab., 45:1 (2008), 190–200 | DOI
[9] Sagitov S. M., “Redutsirovannyi kriticheskii vetvyaschiisya protsess Bellmana–Kharrisa s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 30:4 (1985), 737–749
[10] Sagitov S. M., “Mnogomernye predelnye teoremy dlya vetvyaschegosya protsessa s odnim tipom chastits”, Matem. zametki, 42:1 (1987), 157–165
[11] Sagitov S. M., “Tri predelnye teoremy dlya redutsirovannykh kriticheskikh vetvyaschikhsya protsessov”, Uspekhi matem. nauk, 50:5 (1995), 183–202
[12] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.
[13] Vatutin V. A., “Redutsirovannye vetvyaschiesya protsessy v sluchainoi srede: kriticheskii sluchai”, Teoriya veroyatn. i ee primen., 47:1 (2002), 21–38 | DOI
[14] Vatutin V. A., Dyakonova E. E., “Predelnye teoremy dlya redutsirovannykh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primen., 52:2 (2007), 271–300 | DOI
[15] Vatutin V. A., “O rasstoyanii do blizhaishego obschego predka v vetvyaschikhsya protsessakh Bellmana–Kharrisa”, Matem. zametki, 25:5 (1979), 733–741
[16] Yakymiv A. L., “Redutsirovannye vetvyaschiesya protsessy”, Teoriya veroyatn. i ee primen., 25:3 (1980), 593–596
[17] Zubkov A. M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatn. i ee primen., 20:3 (1975), 614–623