@article{TVP_2014_59_4_a11,
author = {I. F. Pinelis},
title = {Rosenthal-type inequalities for martingales in 2-smooth {Banach} spaces},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {814--821},
year = {2014},
volume = {59},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a11/}
}
I. F. Pinelis. Rosenthal-type inequalities for martingales in 2-smooth Banach spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 4, pp. 814-821. http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a11/
[1] Bentkus V., “On measure concentration for separately Lipschitz functions in product spaces”, Israel J. Math., 158 (2007), 1–17 | DOI
[2] Boucheron S., Bousquet O., Lugosi G., Massart P., “Moment inequalities for functions of independent random variables”, Ann. Probab., 33:2 (2005), 514–560 | DOI
[3] Burkholder D. L., “Distribution function inequalities for martingales”, Ann. Probab., 1 (1973), 19–42 | DOI
[4] Chen L. H. Y., Shao Q.-M., “Stein's method for normal approximation”, An Introduction to Stein's Method, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 4, Singapore Univ. Press, Singapore, 2005, 1–59
[5] Dümbgen L., van de Geer S. A., Veraar M. C., Wellner J. A., “Nemirovski's inequalities revisited”, Amer. Math. Monthly, 117:2 (2010), 138–160 | DOI
[6] Giné E., Latała R., Zinn J., “Exponential and moment inequalities for $U$-statistics”, High Dimensional Probability II (Seattle, WA, 1999), Progr. Probab., 47, Birkhäuser Boston, Boston, 2000, 13–38
[7] Ibragimov R., Sharakhmetov Sh., “O tochnoi konstante v neravenstve Rozentalya”, Teoriya veroyatn. i ee primen., 42:2 (1997), 341–350 | DOI
[8] Ibragimov R., Sharakhmetov S., “On extremal problems and best constants in moment inequalities”, Sankhyā A, 64:1 (2002), 42–56
[9] Latała R., “Estimation of moments of sums of independent real random variables”, Ann. Probab., 25:3 (1997), 1502–1513 | DOI
[10] Latała R., Oleszkiewicz K., “Between Sobolev and Poincaré”, Lecture Notes in Math., 1745, 2000, 147–168 | DOI
[11] Ledoux M., The Concentration of Measure Phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, 2001, 181 pp.
[12] Ledoux M., Oleszkiewicz K., “On measure concentration of vector-valued maps”, Bull. Pol. Acad. Sci. Math., 55:3 (2007), 261–278 | DOI
[13] Ledoux M., Talagrand M., Probability in Banach Spaces. Isoperimetry and Processes, Ergeb. Math. Grenzgeb., 23, Springer-Verlag, Berlin, 1991, 480 pp.
[14] Nagaev S. V., Pinelis I. F., “Nekotorye neravenstva dlya raspredelenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 22:2 (1977), 254–263
[15] Novak S. Y., “On self-normalized sums”, Math. Methods Statist., 9:4 (2000), 415–436
[16] Novak S. Yu., “O samonopmipovannykh summakh sluchainykh velichin i statistike Styudenta”, Teoriya veroyatn. i ee primen., 49:2 (2004), 365–373 | DOI
[17] Pinelis I., “Optimum bounds for the distributions of martingales in Banach spaces”, Ann. Probab., 22:4 (1994), 1679–1706 | DOI
[18] Pinelis I., “Optimum bounds on moments of sums of independent random vectors”, Siberian Adv. Math., 5:3 (1995), 141–150
[19] Pinelis I., “On normal domination of (super)martingales”, Electron. J. Probab., 11 (2006), 1049–1070 | DOI
[20] Pinelis I., Optimum bounds for the distributions of martingales in Banach spaces, arXiv: 1208.2200
[21] Pinelis I., “Exact Rosenthal-type inequalities for $p=3$, and related results”, Statist. Probab. Lett., 83:12 (2013), 2634–2637, arXiv: 1302.6524 | DOI
[22] Pinelis I., “Exact Rosenthal-type bounds”, Ann. Probab. (to appear) , arXiv: 1304.4609
[23] Pinelis I., “Optimal re-centering bounds, with applications to Rosenthal-type concentration of measure inequalities”, High Dimensional Probability VI, The Banff Volume, Progr. Probab., 66, Birkhäuser, Basel, 2013, 81–93, arXiv: 1111.2622
[24] Pinelis I., Molzon R., Berry–Esséen bounds for general nonlinear statistics, with applications to Pearson's and non-central Student's and Hotelling's, arXiv: 0906.0177
[25] Pinelis I. F., “Otsenki momentov beskonechnomernykh martingalov”, Matem. zametki, 27:6 (1980), 953–958
[26] Pinelis I. F., Utev S. A., “Otsenki momentov summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 29:3 (1984), 554–557
[27] Pisier G., “Martingales with values in uniformly convex spaces”, Israel J. Math., 20:3–4 (1975), 326–350 | DOI
[28] Rosenthal H. P., “On the subspaces of $L^p$ ($p>2$) spanned by sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI
[29] Utev S. A., “Ekstremalnye zadachi v momentnykh neravenstvakh”, Predelnye teoremy teorii veroyatnostei, Tr. In-ta matem. SO RAN, 5, Nauka, Novosibirsk, 1985, 56–75