From Lyapunov functions to Sobolev inequalities
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 4, pp. 808-814 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_4_a10,
     author = {L. Li},
     title = {From {Lyapunov} functions to {Sobolev} inequalities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {808--814},
     year = {2014},
     volume = {59},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a10/}
}
TY  - JOUR
AU  - L. Li
TI  - From Lyapunov functions to Sobolev inequalities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 808
EP  - 814
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a10/
LA  - en
ID  - TVP_2014_59_4_a10
ER  - 
%0 Journal Article
%A L. Li
%T From Lyapunov functions to Sobolev inequalities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 808-814
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a10/
%G en
%F TVP_2014_59_4_a10
L. Li. From Lyapunov functions to Sobolev inequalities. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 4, pp. 808-814. http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a10/

[1] Bakry D., Cattiaux P., Guillin A., “Rate of convergence for ergodic continous Markov processes: Lyapunov versus Poincaré”, J. Funct. Anal., 254:3 (2008), 727–759 | DOI

[2] Bakry D., Emery M., “Hypercontractivité de semi-groups de diffuision”, C. R. Acad. Sci. Paris. Sér. I. Math., 299 (1984), 775–778

[3] Cattiaux P., Gentil I., Guillin A., “Weak logarithmic Sobolev inequalities and entropic convergence”, Probab. Theory Related Fields, 139 (2007), 563–603 | DOI

[4] Chen M. F., Wang Y. Z., “Algebraic convergence of Markov chains”, Ann. Appl. Prob., 13 (2003), 604–627 | DOI

[5] Deuschel J. D., “Algebraic $L^2$ decay of attractive critical processes on the lattic”, Ann. Probab., 15 (1987), 780–799

[6] Gao F. Q., Li L. N., “Weak entropy inequalities and entropic convergence”, Science in China A, 51:10 (2008), 1798–1806 | DOI

[7] Liggett T. M., “$L^2$ rates of convergence of attractive reversible nearst paticle systems: The critical case”, Ann. Probab., 19 (1991), 935–959 | DOI

[8] Meyn S. P., Tweedie R. L., Markov Chains and Stochastic Stability, Spring-Verlag, London, 1993

[9] Röckner M., Wang F. Y., “Weak Poincaré inequalities and $L^2$-convergence rates of markov semigroup”, J. Funct. Anal., 185 (2001), 564–603 | DOI

[10] Wang F. Y., Zhang Q. Z., “Weak Poincaré inequalities, decay of Markov semigroups and concentration of Measures”, Acta Mathematica Sinica, 21:4 (2005), 937–942 | DOI