@article{TVP_2014_59_4_a1,
author = {E. Vl. Bulinskaya},
title = {Complete classification of catalytic branching processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {639--666},
year = {2014},
volume = {59},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a1/}
}
E. Vl. Bulinskaya. Complete classification of catalytic branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 4, pp. 639-666. http://geodesic.mathdoc.fr/item/TVP_2014_59_4_a1/
[1] Bulinskaya E. Vl., “Vremena dostizheniya s zapretom dlya sluchainogo bluzhdaniya”, Matem. tr., 15:1 (2012), 3–26
[2] Bulinskaya E. Vl., “Dokriticheskoe kataliticheskoe vetvyascheesya sluchainoe bluzhdanie s konechnoi ili beskonechnoi dispersiei chisla potomkov”, Tr. MIAN, 282, 2013, 69–79
[3] Vatutin V. A., “Vetvyaschiesya protsessy s finalnymi tipami chastits i sluchainye derevya”, Teoriya veroyatn. i ee primen., 39:4 (1994), 699–715
[4] Vatutin V. A., Topchii V. A., “Kataliticheskie vetvyaschiesya sluchainye bluzhdaniya na $\mathbf{Z}^d$ s vetvleniem v nule”, Matem. tr., 14:2 (2011), 28–72
[5] Vatutin V. A., Topchii V. A., “Kriticheskie vetvyaschiesya protsessy Bellmana–Kharrisa s dolgo zhivuschimi chastitsami”, Tr. MIAN, 282, 2013, 257–287
[6] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2010, 560 pp.
[7] Lifshits M. A., “Tsiklicheskoe povedenie maksimuma v ierarkhicheskoi skheme summirovaniya”, Zap. nauchn. sem. POMI, 408, 2012, 268–284
[8] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.
[9] Chzhun K. L., Odnorodnye tsepi Markova, Mir, M., 1964, 425 pp.
[10] Yarovaya E. B., “Kriterii eksponentsialnogo rosta chisla chastits v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 55:4 (2010), 705–731 | DOI
[11] Albeverio S., Bogachev L. V., “Branching random walk in a catalytic medium. I: Basic equations”, Positivity, 4:1 (2000), 41–100 | DOI
[12] Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Math. Acad. Sci. Paris, 326:8 (1998), 975–980 | DOI
[13] Barbour A. D., Luczak M. J., “Central limit approximations for Markov population processes with countably many types”, Electron. J. Probab., 17:90 (2012), 1–16
[14] Bertacchi D., Zucca F., “Characterization of critical values of branching random walks on weighted graphs through infinite-type branching processes”, J. Statist. Phys., 134:1 (2009), 53–65 | DOI
[15] Biggins J. D., “Spreading speeds in reducible multitype branching random walk”, Ann. Appl. Probab., 22:5 (2012), 1778–1821 | DOI
[16] Bulinskaya E. Vl., “Local particles numbers in critical branching random walk”, J. Theoret. Probab., 27:3 (2014), 878–898 | DOI
[17] Bulinskaya E. Vl., “Finiteness of hitting times under taboo”, Statist. Probab. Lett., 85 (2014), 15–19 | DOI
[18] Carmona Ph., Hu Y., “The spread of a catalytic branching random walk”, Ann. Inst. Henri Poincaré Probab. Statist., 50:2 (2014), 327–351 | DOI
[19] Crump K. S., “On systems of renewal equations: The reducible case”, J. Math. Anal. Appl., 31:3 (1970), 517–528 | DOI
[20] Dawson D., Fleischmann K., “A super-Brownian motion with a single point catalyst”, Stochastic Process. Appl., 49:1 (1994), 3–40 | DOI
[21] Döring L., Roberts M., “Catalytic branching processes via spine techniques and renewal theory”, Lecture Notes in Math., 2078, 2013, 305–322 | DOI
[22] Fleischmann K., Le Gall J.-F., “A new approach to the single point catalytic super-Brownian motion”, Probab. Theory Related Fields, 102:1 (1995), 63–82 | DOI
[23] Hautphenne S., Latouche G., Nguyen G. T., “Extinction probabilities of branching processes with countably infinitely many types”, Adv. Appl. Probab., 45:4 (2013), 1068–1082 | DOI
[24] Hu Y., Shi Z., “Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees”, Ann. Probab., 37:2 (2009), 742–789 | DOI
[25] Jones G., “Calculations for multi-type age-dependent binary branching processes”, J. Math. Biol., 63:1 (2011), 33–56 | DOI
[26] Good I. J., “The multivariate saddlepoint method and chi-squared for the multinomial distribution”, Ann. Math. Statist., 32:2 (1961), 535–548 | DOI
[27] Mode Ch. J., “A multidimensional age-dependent branching process with applications to natural selection, I”, Math. Biosci., 3 (1968), 1–18 | DOI
[28] Mode Ch. J., “A multidimensional age-dependent branching process with applications to natural selection, II”, Math. Biosci., 3 (1968), 231–247 | DOI
[29] Moy S.-T. C., “Extensions of a limit theorem of Everett, Ulam and Harris on multitype branching processes to a branching process with countably many types”, Ann. Math. Statist., 38:4 (1967), 992–999 | DOI
[30] Sagitov S., “Linear-fractional branching processes with countably many types”, Stochastic Process. Appl., 123:8 (2013), 2940–2956 | DOI
[31] Seneta E., Non-negative Matrices and Markov Chains, Springer, New York, 2006, 287 pp.
[32] Vatutin V. A., Topchii V. A., Yarovaya E. B., “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory Probab. Math. Statist., 69 (2004), 1–15 | DOI
[33] Yakovlev A. Y., Yanev N. M., “Relative frequencies in multitype branching processes”, Ann. Appl. Probab., 19:1 (2009), 1–14 | DOI
[34] Yarovaya E. B., “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI