Optional sampling theorem for deformed submartingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 585-594 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_3_a8,
     author = {I. V. Pavlov and O. V. Nazarko},
     title = {Optional sampling theorem for deformed submartingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {585--594},
     year = {2014},
     volume = {59},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a8/}
}
TY  - JOUR
AU  - I. V. Pavlov
AU  - O. V. Nazarko
TI  - Optional sampling theorem for deformed submartingales
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 585
EP  - 594
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a8/
LA  - ru
ID  - TVP_2014_59_3_a8
ER  - 
%0 Journal Article
%A I. V. Pavlov
%A O. V. Nazarko
%T Optional sampling theorem for deformed submartingales
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 585-594
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a8/
%G ru
%F TVP_2014_59_3_a8
I. V. Pavlov; O. V. Nazarko. Optional sampling theorem for deformed submartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 585-594. http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a8/

[1] Dub Dzh. L., Veroyatnostnye protsessy, IL, M., 1956, 605 pp.

[2] Shiryaev A. N., O martingalnykh metodakh v zadachakh o peresechenii granits brounovskim dvizheniem, Sovr. probl. matem., 8, MIAN, M., 2007, 78 pp. | DOI

[3] Watkins J. C., Discrete Time Stochastic Processes, Lecture Notes, , 2007, 106 pp. http://math.arizona.edu/ ̃ jwatkins/discretetime.pdf

[4] Bochner S., “Partial ordering in the theory of martingales”, Ann. Math., 62:1 (1955), 162–169 | DOI | MR | Zbl

[5] Kurtz T. G., “The optional sampling theorem for martingales indexed by directed sets”, Ann. Probab., 8:4 (1980), 675–681 | DOI | MR | Zbl

[6] Washburn R. (Jr.), Willsky A., “Optional sampling for submartingales indexed by partially ordered sets”, Ann. Probab., 9:6 (1981), 957–970 | DOI | MR | Zbl

[7] Hürzeler H. E., “The optional sampling theorem for processes indexed by a partially ordered set”, Ann. Probab., 13:4 (1985), 1224–1235 | DOI | MR | Zbl

[8] Grobler J., “Doob's optional sampling theorem in Riesz spaces”, Positivity, 15:4 (2011), 617–637 | DOI | MR | Zbl

[9] Alò R. A., de Korvin A., Roberts Ch., “The optional sampling theorem for convex set valued martingales”, J. Reine Angew. Math., 310 (1979), 1–6 | MR | Zbl

[10] Buckdahn R., Engelbert H. J., “Randomized stopping times: Doob's optional sampling theorem and optimal stopping”, Math. Nachr., 115 (1984), 237–247 | DOI | MR | Zbl

[11] Hu Y., Ma Y., Peng Sh., Yao S., “Representation theorems for quadratic $\mathcal{F}$-consistent nonlinear expectations”, Stochastic Process. Appl., 118:9 (2008), 1518–1551 | DOI | MR | Zbl

[12] Coquio A., “The optional stopping theorem for quantum martingales”, J. Funct. Anal., 238:1 (2006), 149–180 | DOI | MR | Zbl

[13] Nazarko O. V., Pavlov I. V., “Rekurrentnyi metod postroeniya slabykh deformatsii po protsessu plotnostei v ramkakh modeli stokhasticheskogo bazisa, snabzhennogo spetsialnoi khaarovskoi filtratsiei”, Vestn. RGUPS, 45:1 (2012), 201–208