Optional sampling theorem for deformed submartingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 585-594

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TVP_2014_59_3_a8,
     author = {I. V. Pavlov and O. V. Nazarko},
     title = {Optional sampling theorem for deformed submartingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {585--594},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a8/}
}
TY  - JOUR
AU  - I. V. Pavlov
AU  - O. V. Nazarko
TI  - Optional sampling theorem for deformed submartingales
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 585
EP  - 594
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a8/
LA  - ru
ID  - TVP_2014_59_3_a8
ER  - 
%0 Journal Article
%A I. V. Pavlov
%A O. V. Nazarko
%T Optional sampling theorem for deformed submartingales
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 585-594
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a8/
%G ru
%F TVP_2014_59_3_a8
I. V. Pavlov; O. V. Nazarko. Optional sampling theorem for deformed submartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 585-594. http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a8/