@article{TVP_2014_59_3_a3,
author = {S. V. Nagaev},
title = {Local renewal theorems in the absence of an expectation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {468--498},
year = {2014},
volume = {59},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a3/}
}
S. V. Nagaev. Local renewal theorems in the absence of an expectation. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 468-498. http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a3/
[1] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp.
[2] de Bruijn N. G., Erdös P., “On a recursion formula and some Tauberian theorems”, J. Res. Nat. Bur. Stand., 50 (1953), 161–164 | DOI | MR | Zbl
[3] Garsia A., Lamperti J., “A discrete renewal theorem with infinite mean”, Comment. Math. Helv., 37 (1963), 221–234 | DOI | MR | Zbl
[4] Williamson J. A., “Random walks and Riesz kernels”, Pacific J. Math., 25:2 (1968), 393–415 | DOI | MR | Zbl
[5] Doney R. A., “One-sided local large deviation and renewal theorems in the case of infinite mean”, Probab. Theory Related Fields, 107:4 (1997), 451–465 | DOI | MR | Zbl
[6] Nagaev S. V., “Teorema vosstanovleniya pri otsutstvii stepennykh momentov”, Teoriya veroyatn. i ee primen., 56:1 (2011), 188–197 | DOI
[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Fizmatlit, M., 2003, 632 pp.