Asymptotics of sums of residuals of a one-parameter regression on order statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 452-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_3_a2,
     author = {A. P. Kovalevskii and E. V. Shatalin},
     title = {Asymptotics of sums of residuals of a one-parameter regression on order statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {452--467},
     year = {2014},
     volume = {59},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a2/}
}
TY  - JOUR
AU  - A. P. Kovalevskii
AU  - E. V. Shatalin
TI  - Asymptotics of sums of residuals of a one-parameter regression on order statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 452
EP  - 467
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a2/
LA  - ru
ID  - TVP_2014_59_3_a2
ER  - 
%0 Journal Article
%A A. P. Kovalevskii
%A E. V. Shatalin
%T Asymptotics of sums of residuals of a one-parameter regression on order statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 452-467
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a2/
%G ru
%F TVP_2014_59_3_a2
A. P. Kovalevskii; E. V. Shatalin. Asymptotics of sums of residuals of a one-parameter regression on order statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 452-467. http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a2/

[1] Quetelet A., “Recherches sur le poids de l'homme aux differens âges”, Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles, 7 (1832), 1–46

[2] Keys A., Fidanza F., Karvonen M. J., Kimura N., Taylor H. L., “Indices of relative weight and obesity”, J. Chronic Diseases, 25:6–-7 (1972), 329–343 | DOI

[3] Arnold J. R., Libby W. F., “Age determinations by radiocarbon content: checks with samples of known age”, Science, 110:2869 (1949), 678–680 | DOI

[4] MacNeill I. B., “Limit processes for sequences of partial sums of regression residuals”, Ann. Probab., 6:4 (1978), 695–698 | DOI | MR | Zbl

[5] Aue A., Horvath L., Huskova M., Kokoszka P., “Testing for change in polynomial regression”, Bernoulli, 14:3 (2008), 637–660 | DOI | MR | Zbl

[6] Mugantseva L. A., “Proverka normalnosti v skhemakh odnomernoi i mnogomernoi lineinoi regressii”, Teoriya veroyatn. i ee primen., 22:3 (1977), 603–614 | MR | Zbl

[7] Gastwirth J. L., “A general definition of the Lorenz curve”, Econometrica, 39 (1971), 1037–1039 | DOI | Zbl

[8] Goldie C. M., “Convergence theorems for empirical Lorenz curves and their inverses”, Adv. Appl. Probab., 9 (1977), 765–791 | DOI | MR | Zbl

[9] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp.

[10] Dougerti K., Vvedenie v ekonometriku, INFRA-M, M., 1999, 416 pp.

[11] Deheuvels P., Martynov G. V., “Cramér–von Mises-type tests with applications to tests of independence for multivariate extreme-value distributions”, Comm. Statist. Theory Methods, 25:4 (1996), 871–908 | DOI | MR | Zbl

[12] Martynov G. V., Kriterii omega-kvadrat, Nauka, M., 1978, 79 pp.

[13] Durbin J., Knott M., Taylor C. C., “Components of Cramer–von Mises Statistics, II”, J. Roy. Statist. Soc. Ser. B, 37 (1975), 216–237 | MR | Zbl

[14] Deivid G., Poryadkovye statistiki, Nauka, M., 1979, 335 pp.

[15] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984, 527 pp.

[16] Korshunov D. A., Foss S. G., Eisymont I. M., Sbornik zadach i uprazhnenii po teorii veroyatnostei, Lan, SPb., 2004, 191 pp.

[17] Shiryaev A. N., Veroyatnost, v. 1, MTsNMO, M., 2004, 519 pp.

[18] Hoeffding W., “On the distribution of the expected values of the order statistics”, Ann. Math. Statist., 24:1 (1953), 93–100 | DOI | MR | Zbl