Asymptotic normality of estimates with local averaging for weakly dependent random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 603-613 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_3_a10,
     author = {A. P. Shashkin},
     title = {Asymptotic normality of estimates with local averaging for weakly dependent random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {603--613},
     year = {2014},
     volume = {59},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a10/}
}
TY  - JOUR
AU  - A. P. Shashkin
TI  - Asymptotic normality of estimates with local averaging for weakly dependent random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 603
EP  - 613
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a10/
LA  - ru
ID  - TVP_2014_59_3_a10
ER  - 
%0 Journal Article
%A A. P. Shashkin
%T Asymptotic normality of estimates with local averaging for weakly dependent random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 603-613
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a10/
%G ru
%F TVP_2014_59_3_a10
A. P. Shashkin. Asymptotic normality of estimates with local averaging for weakly dependent random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 603-613. http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a10/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.

[2] Bulinskii A. V., “Statisticheskii variant tsentralnoi predelnoi teoremy dlya vektornoznachnykh sluchainykh polei”, Matem. zametki, 76:4 (2004), 490–501 | DOI | MR | Zbl

[3] Bulinskii A. V., Vronskii M. A., “Statisticheskii variant tsentralnoi predelnoi teoremy dlya assotsiirovannykh sluchainykh polei”, Fundam. i prikl. matem., 2:4 (1996), 999–1018 | MR | Zbl

[4] Bulinskii A. V., Shashkin A. P., Predelnye teoremy dlya assotsiirovannykh sluchainykh polei i rodstvennykh sistem, Fizmatlit, M., 2008, 477 pp.

[5] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp.

[6] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i primen., 1:2 (1956), 177–238 | MR | Zbl

[7] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Nauka, M., 1990, 284 pp.

[8] Bulinski A., Kryzhanovskaya N., “Convergence rate in CLT for vector-valued random fields with self-normalization”, Probab. Math. Stat., 26:2 (2006), 261–281 | MR | Zbl

[9] Bulinski A., Suquet Ch., “Normal approximation for quasi-associated random fields”, Statist. Probab. Lett., 54:2 (2001), 215–226 | DOI | MR | Zbl

[10] Esary J., Proschan F., Walkup D., “Association of random variables, with applications”, Ann. Math. Statist., 38:5 (1967), 1466–1474 | DOI | MR | Zbl

[11] Hall P., “Bounds on the rate of convergence of moments in the central limit theorem”, Ann. Probab., 10:4 (1982), 1004–1018 | DOI | MR | Zbl

[12] Oliveira P. E., Suquet Ch., “An invariance principle in $L^2[0, 1]$ for nonstationary $\varphi$-mixing sequences”, Comment. Math. Univ. Carol., 36 (1995), 293–302 | MR | Zbl

[13] Oliveira P. E., Suquet Ch., “An $L^2[0,1]$ invariance principle for LPQD random variables”, Portugaliae mathematica, 53:2 (1996), 367–379 | MR | Zbl

[14] Peligrad M., Shao Q.-M., “A note on estimation of variance for $\rho$-mixing sequences”, Stat. Probab. Lett., 26:2 (1996), 141–145 | DOI | MR | Zbl

[15] Prakasa Rao B. L., Associated Sequences, Demimartingales and Nonparametric Inference, Birkhäuser, Boston, 2012, 272 pp. | MR | Zbl