Multidimensional geometry, functions of many variables and probability
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 436-451 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_3_a1,
     author = {V. A. Zorich},
     title = {Multidimensional geometry, functions of many variables and probability},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {436--451},
     year = {2014},
     volume = {59},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a1/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Multidimensional geometry, functions of many variables and probability
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 436
EP  - 451
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a1/
LA  - ru
ID  - TVP_2014_59_3_a1
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Multidimensional geometry, functions of many variables and probability
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 436-451
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a1/
%G ru
%F TVP_2014_59_3_a1
V. A. Zorich. Multidimensional geometry, functions of many variables and probability. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 3, pp. 436-451. http://geodesic.mathdoc.fr/item/TVP_2014_59_3_a1/

[1] Poincaré H., Calcul des probabilités, Gauthier-Villars, Paris, 1912, 340 pp. ; Puankare A., Teorii veroyatnostei, RKhD, M.–Izhevsk, 1999, 276 pp. | Zbl

[2] Lévy P., Problèmes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951, 484 pp. | MR | Zbl

[3] Milman V., Schechtman G., Asymptotic Theory of Finite Dimensional Normed Spaces, With an Appendix by M. Gromov, Springer-Verlag, Berlin, 1986, 156 pp. ; M. Gromov, “Isoperimetric inequality in Riemannian manifolds”, Appendix I, Lecture Notes in Math., 1200, 114–129 | MR | Zbl

[4] Milman V. D., “Yavleniya, voznikayuschie v vysokikh razmernostyakh”, Uspekhi matem. nauk, 59:1 (2004), 157–168 | DOI | MR

[5] Milman E., “On the role of convexity in isoperimetry, spectral gap and concentration”, Invent. Math., 177:1 (2009), 1–43 | DOI | MR | Zbl

[6] Bogachëv V. I., Gaussovskie mery, Nauka, M., 1997, 352 pp. | MR

[7] Ball K., “An elementary introduction to modern convex geometry”, Flavors of Geometry, Math. Sci. Res. Inst. Publ., 31, ed. S. Lévy, Cambridge Univ. Press, Cambridge, 1997, 1–58 | MR | Zbl

[8] Lorents G. A., Statisticheskie teorii v termodinamike, RKhD, M.–Izhevsk, 2001, 192 pp.

[9] Shrëdinger E., Lektsii po fizike, RKhD, M.–Izhevsk, 2001, 156 pp.

[10] Khinchin A. Ya., “Simmetricheskie funktsii na mnogomernykh poverkhnostyakh”, Pamyati Aleksandra Aleksandrovicha Andronova, Izd-vo AN SSSR, M., 1955, 541–576 | MR

[11] Opoitsev V. I., “Nelineinyi zakon bolshikh chisel”, Avtomat. i telemekh., 1994, no. 4, 65–75 | MR

[12] Manin Yu. I., Matematika i fizika, Novoe v zhizni, nauke, tekhnike. Ser. Matem., kibernet., 12, Znanie, M., 1979, 63 pp.; Манин Ю. И., Математика как метафора, МЦНМО, М., 2008, 400 с. | Zbl

[13] Minlos R. A., Vvedenie v matematicheskuyu statisticheskuyu fiziku, MTsNMO, M., 2002, 111 pp.

[14] Berezin F. A., Lektsii po statisticheskoi fizike, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 192 pp.

[15] Sinai Ya. G., Teoriya fazovykh perekhodov. Strogie rezultaty, RKhD, M.–Izhevsk, 2001, 237 pp. | MR

[16] Ryuel D., Sluchainost i khaos, RKhD, M.–Izhevsk, 2001, 191 pp.

[17] Kats M., Veroyatnost i smezhnye voprosy v fizike, URSS, M., 2003, 273 pp.

[18] Kozlov V. V., Teplovoe ravnovesie po Gibbsu i Puankare, RKhD, M.–Izhevsk, 2002, 319 pp. | MR

[19] Kurchan J., Laloux L., “Phase space geometry and slow dynamics”, J. Phys. A: Math. Gen., 29:9 (1996), 1929–1948 | DOI | MR | Zbl

[20] Zorich V., Mathematical Analysis of Problems in the Natural Sciences, Springer, Berlin, 2011, 135 pp. ; Zorich V. A., Matematicheskii analiz zadach estestvoznaniya, MTsNMO, M., 2008, 135 pp. | MR | Zbl

[21] Shennon K., Raboty po teorii informatsii i kibernetike, Kniga vklyuchaet statyu: Shennon K., Matematicheskaya teoriya svyazi, IL, M., 1963, 829 pp.; Shannon C. E., “A mathematical theory of communication”, Bell System Tech. J., 27 (1948), 379–423 ; 623–656 | DOI | MR | Zbl

[22] A. A. Kharkevich (red.), Teoriya informatsii i ee prilozheniya, Sb. perevodov, vklyuchaet statyu: Shennon K., Svyaz pri nalichii shuma, Fizmatgiz, M., 1959, 328 pp.; Shannon C. E., “Communication in the presence of noise”, Proc. IRE, 37:1 (1949), 10–21 | DOI | MR

[23] Kolmogorov A. N., Yubileinoe izdanie v trekh knigakh (k 100-letiyu so dnya rozhdeniya akad. A. N. Kolmogorova), v. 2, Etikh strok beguschikh pisma, Fizmatlit, M., 2003, 671 pp. | Zbl

[24] Kolmogorov A. N., “Metod mediany v teorii oshibok”, Matem. sb., 38:3-4 (1931), 47–50 ; Колмогоров А. Н., Теория вероятностей и математическая статистика, Наука, М., 1986, 111–114 | MR