Evolution equations with common stochastic measures in Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 375-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_2_a8,
     author = {V. M. Radchenko},
     title = {Evolution equations with common stochastic measures in {Hilbert} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {375--386},
     year = {2014},
     volume = {59},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a8/}
}
TY  - JOUR
AU  - V. M. Radchenko
TI  - Evolution equations with common stochastic measures in Hilbert space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 375
EP  - 386
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a8/
LA  - ru
ID  - TVP_2014_59_2_a8
ER  - 
%0 Journal Article
%A V. M. Radchenko
%T Evolution equations with common stochastic measures in Hilbert space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 375-386
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a8/
%G ru
%F TVP_2014_59_2_a8
V. M. Radchenko. Evolution equations with common stochastic measures in Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 375-386. http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a8/

[1] Da Prato G., “Some results on linear stochastic evolution equations in {H}ilbert spaces by the semi-groups method”, Stoch. Anal. Appl., 1 (1983), 57–88 | DOI | MR | Zbl

[2] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992, 454 pp. | MR | Zbl

[3] Peszat S., Zabczyk J., Stochastic partial differential equations with Lévy noise: an evolution equation approach, Cambridge Univ. Press, Cambridge, 2007, 419 pp. | MR | Zbl

[4] Duncan T. E., Pasik-Duncan B., Maslowski B., “Fractional Brownian motion and stochastic equations in Hilbert spaces”, Stoch. Dyn., 2:2 (2002), 225–250 | DOI | MR | Zbl

[5] Brzeźniak Z., van Neerven J., “Stochastic convolution in separable {B}anach space and the stochastic linear {C}auchy problem”, Studia Math., 143:1 (2000), 43–74 | MR | Zbl

[6] van Neerven J. M. A. M., Weis L., “Stochastic integration of functions with values in a {B}anach space”, Studia Math., 166:2 (2005), 131–170 | DOI | MR | Zbl

[7] van Neerven J., Veraar M., Weis L., “Stochastic evolution equations in UMD {B}anach spaces”, J. Funct. Anal., 255:4 (2008), 940–993 | DOI | MR | Zbl

[8] Dettweiler J., Weis L., van Neerven J., “Space-time regularity of solutions of the parabolic stochastic {C}auchy problem”, Stoch. Anal. Appl., 24:4 (2006), 843–869 | DOI | MR | Zbl

[9] Mémin J., Mishura Yu., Valkeila E., “Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion”, Statist. Probab. Lett., 51:2 (2001), 197–206 | DOI | MR | Zbl

[10] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes, Chapman Hall, Boca Raton, 1994, 632 pp. | MR

[11] Kwapień S., Woycziński W. A., Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston, 1992, 360 pp. | MR | Zbl

[12] Radchenko V. N., Integraly po obschim sluchainym meram, Trudy Instituta matematiki NAN Ukrainy, 27, In-t matematiki NAN Ukrainy, Kiev, 1999, 196 pp.

[13] Radchenko V. N., “Integraly po cluchainym meram i cluchainye lineinye funktsionaly”, Teoriya veroyatn. i ee primen., 36:3 (1991), 594–596

[14] Radchenko V. N., “Vyborochnye funktsii sluchainykh mer i prostranstva Besova”, Teoriya veroyatn. i ee primen., 54:1 (2009), 158–166 | DOI | Zbl

[15] Drewnowski L., “Topological rings of sets, continuous set functions, integration, III”, Bull. Acad. Pol. Sci., 20 (1972), 439–445 | MR | Zbl

[16] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985, 368 pp.

[17] Radchenko V. M., “Besov regularity of stochastic measures”, Statist. Probab. Lett., 77:8 (2007), 822–825 | DOI | MR | Zbl

[18] Drewnowski L., “Boundness of vector measures with values in the spaces ${L}_{0}$ of {B}ochner measurable functions”, Proc. Amer. Math. Soc., 91 (1984), 581–588 | MR | Zbl

[19] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983, 280 pp. | MR | Zbl

[20] Kamont A., “A discrete characterization of Besov spaces”, Approx. Theory Appl. (N.S.), 13:2 (1997), 63–77 | MR | Zbl