On asymptotic expansion and CLT of linear eigenvalue statistics for sample covariance matrices when $N/M\rightarrow0$
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 313-339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_2_a5,
     author = {Z. Bao},
     title = {On asymptotic expansion and {CLT} of linear eigenvalue statistics for sample covariance matrices when $N/M\rightarrow0$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {313--339},
     year = {2014},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a5/}
}
TY  - JOUR
AU  - Z. Bao
TI  - On asymptotic expansion and CLT of linear eigenvalue statistics for sample covariance matrices when $N/M\rightarrow0$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 313
EP  - 339
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a5/
LA  - en
ID  - TVP_2014_59_2_a5
ER  - 
%0 Journal Article
%A Z. Bao
%T On asymptotic expansion and CLT of linear eigenvalue statistics for sample covariance matrices when $N/M\rightarrow0$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 313-339
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a5/
%G en
%F TVP_2014_59_2_a5
Z. Bao. On asymptotic expansion and CLT of linear eigenvalue statistics for sample covariance matrices when $N/M\rightarrow0$. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 313-339. http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a5/

[1] Albeverio S., Pastur L., Shcherbina M., “On the $ 1/n$ expansion for some unitary invariant ensemble of random matrices”, Comm. Math. Phys., 224 (2001), 271–305 | DOI | MR | Zbl

[2] Anderson G. W., Zeitouni O., “CLT for a band matrix model”, Probab. Theory Related Fields, 134 (2006), 283–338 | DOI | MR | Zbl

[3] Bai Z. D., Silverstein J. W., “CLT for linear spectral statistics of large dimensional sample covariance matrices”, Ann. Probab., 32 (2004), 553–605 | DOI | MR | Zbl

[4] Bai Z. D., Silverstein J. W., Spectral Analysis of Large Dimensional Random Matrices, Science Press, Beijing, 2006, 393 pp.

[5] Bai Z. D., Yin Y. Q., “Convergence to the semicircle law”, Ann. Probab., 16:2 (1988), 863–875 | DOI | MR | Zbl

[6] Dharmadhikari S. W., Fabian V., Jogdeo K., “Bounds on the moments of martingales”, Ann. Math. Statist., 39 (1968), 1719–1723 | DOI | MR | Zbl

[7] El Karoui N., On the largest eigenvalue of Wishart matrices with identity covariance when $ n, p$ and $ p/n\rightarrow\infty$, arXiv: math.ST/0309355

[8] Hsu P. L., “On the distribution of roots of certain determinantal equations”, Ann. Eugenics, 9 (1939), 250–258 | DOI | MR

[9] Johansson K., “On fluctuations of eigenvalues of random Hermitian matrices”, Duke Math. J., 91 (1998), 151–204 | DOI | MR | Zbl

[10] Khorunzhy A. M., Khoruzhenko B. A., Pastur L. A., “Asymptotic properties of large random matrices with independent entries”, J. Math. Phys., 37:10 (1996), 5033–5060 | DOI | MR | Zbl

[11] Khorunzhy A. M., Kirsch W., “On asymptotic expansions and scales of spectral universality in band random matrix ensembles”, Comm. Math. Phys., 231 (2002), 223–255 | DOI | MR | Zbl

[12] Lytova A., Pastur L., “Central limit theorem for linear eigenvalue statistics of random matrices with independent entries”, Ann. Probab., 37:5 (2009), 1778–1840 | DOI | MR | Zbl

[13] Marchenko V. A., Pastur L. A., “Raspredelenie sobstvennykh znachenii v nekotorykh ansamblyakh sluchainykh matrits”, Matem. sb., 72:4 (1967), 507–536 | MR | Zbl

[14] Shcherbina M., “Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices”, Zhurn. matem. fiz., anal., geom., 7:2 (2011), 176–192 | MR | Zbl

[15] Sinai Ya., Soshnikov A., “Central limit theorem for traces of large random symmetric matrices with independent matrix elements”, Bol. Soc. Brasil. Mat. (N.S.), 29 (1998), 1–24 | DOI | MR | Zbl

[16] Wigner E., “Characteristic vectors of bordered matrices with infinite dimensions”, Ann. Math., 62 (1955), 548–564 | DOI | MR | Zbl

[17] Wishart J., “The generalized product moment distribution in samples from a normal multivariate population”, Biometrika A, 20 (1928), 32–43 | DOI | MR