@article{TVP_2014_59_2_a4,
author = {V. V. Senatov},
title = {On nonuniform estimates of approximation in the central limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {276--312},
year = {2014},
volume = {59},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a4/}
}
V. V. Senatov. On nonuniform estimates of approximation in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 276-312. http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a4/
[1] Gnedenko B. V., Kurs teorii veroyatnostei, URSS, M., 2005, 446 pp.
[2] Kramer G., Sluchainye velichiny i raspredeleniya veroyatnostei, IL, M., 1947, 143 pp.
[3] Prokhorov A. V., Ushakov V. G., Ushakov N. G., Zadachi po teorii veroyatnostei, M., 1986, 327 pp.
[4] Senatov V. V., Tsentralnaya predelnaya teorema: tochnost approksimatsii i asimptoticheskie razlozheniya, Librokom, M., 2009, 352 pp.
[5] Shiryaev A. N., Veroyatnost, v. 1, 2, MTsNMO, M., 2004, 927 pp.
[6] Dobrić V., Ghosh B. K., “Some analogs of the Berry–Esseen bound for first-order Chebyshev–Edgeworth expansions”, Statist. Decisions, 14:4 (1996), 383–404 | MR | Zbl
[7] Esseen C.-G., “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl
[8] Shimizu R., “On the remainder term for the central limit theorem”, Ann. Inst. Statist. Math., 26 (1974), 195–201 | DOI | MR | Zbl
[9] Uspensky J., Introduction to Mathematical Probability, McGraw-Hill, New York, 1937, 411 pp. | Zbl
[10] Senatov V. V., “O rasshirenii klassa raspredelenii, mnogokratnye svertki kotorykh dopuskayut asimptoticheskie razlozheniya s yavnymi otsenkami ostatochnykh chastei”, Teoriya veroyatn. i ee primen. (to appear)