On nonuniform estimates of approximation in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 276-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_2_a4,
     author = {V. V. Senatov},
     title = {On nonuniform estimates of approximation in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {276--312},
     year = {2014},
     volume = {59},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a4/}
}
TY  - JOUR
AU  - V. V. Senatov
TI  - On nonuniform estimates of approximation in the central limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 276
EP  - 312
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a4/
LA  - ru
ID  - TVP_2014_59_2_a4
ER  - 
%0 Journal Article
%A V. V. Senatov
%T On nonuniform estimates of approximation in the central limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 276-312
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a4/
%G ru
%F TVP_2014_59_2_a4
V. V. Senatov. On nonuniform estimates of approximation in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 276-312. http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a4/

[1] Gnedenko B. V., Kurs teorii veroyatnostei, URSS, M., 2005, 446 pp.

[2] Kramer G., Sluchainye velichiny i raspredeleniya veroyatnostei, IL, M., 1947, 143 pp.

[3] Prokhorov A. V., Ushakov V. G., Ushakov N. G., Zadachi po teorii veroyatnostei, M., 1986, 327 pp.

[4] Senatov V. V., Tsentralnaya predelnaya teorema: tochnost approksimatsii i asimptoticheskie razlozheniya, Librokom, M., 2009, 352 pp.

[5] Shiryaev A. N., Veroyatnost, v. 1, 2, MTsNMO, M., 2004, 927 pp.

[6] Dobrić V., Ghosh B. K., “Some analogs of the Berry–Esseen bound for first-order Chebyshev–Edgeworth expansions”, Statist. Decisions, 14:4 (1996), 383–404 | MR | Zbl

[7] Esseen C.-G., “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl

[8] Shimizu R., “On the remainder term for the central limit theorem”, Ann. Inst. Statist. Math., 26 (1974), 195–201 | DOI | MR | Zbl

[9] Uspensky J., Introduction to Mathematical Probability, McGraw-Hill, New York, 1937, 411 pp. | Zbl

[10] Senatov V. V., “O rasshirenii klassa raspredelenii, mnogokratnye svertki kotorykh dopuskayut asimptoticheskie razlozheniya s yavnymi otsenkami ostatochnykh chastei”, Teoriya veroyatn. i ee primen. (to appear)