@article{TVP_2014_59_2_a11,
author = {Y. F. Wu},
title = {Some limit theorems for arrays of rowwise pairwise {NQD} random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {400--410},
year = {2014},
volume = {59},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a11/}
}
Y. F. Wu. Some limit theorems for arrays of rowwise pairwise NQD random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 400-410. http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a11/
[1] Sung H. S., Lisawadi S., Volodin A., “Weak laws of large numbers for arrays under a condition of uniform integrability”, J. Korean Math. Soc., 45 (2008), 289–300 | DOI | MR | Zbl
[2] Lehmann E. L., “Some concepts of dependence”, Ann. Math. Statist., 37 (1966), 1137–1153 | DOI | MR | Zbl
[3] Joag-Dev K., Proschan F., “Negative association of random variables, with applications”, Ann. Statist., 11:1 (1983), 286–295 | DOI | MR | Zbl
[4] Newman C. M., “Asymptotic independence and limit theorems for positively and negatively dependent random variables”, Statistics and Probability, v. 5, ed. Y. L. Tong, Inst. Math. Statist., Hayward, 1984, 127–140 | MR
[5] Wu Q. Y., “Convergence properties of pairwise NQD random sequences”, Acta Math. Sin. (Engl. Ser.), 45:3 (2002), 617–624 (in Chinese) | MR | Zbl
[6] Matula P., “A note on the almost sure convergence of sums of negatively dependent random variables”, Statist. Probab. Lett., 15:3 (1992), 209–213 | DOI | MR | Zbl
[7] Liang H. Y., Chen Z. J., Su C., “Convergence of Jamison-type weighted sums of pairwise negatively quadrant dependent random variables”, Acta Math. Appl. Sin. (Engl. Ser.), 18:1 (2002), 161–168 | DOI | MR | Zbl
[8] Li R., Yang W. G., “Strong convergence of pairwise NQD random sequences”, J. Math. Anal. Appl., 344:2 (2008), 741–747 | DOI | MR | Zbl
[9] Wan C. G., “Law of large numbers and complete convergence for pairwise NQD random sequences”, Acta Math. Appl. Sin., 28 (2005), 253–261 (in Chinese) | MR
[10] Meng Y. J., Lin Z. Y., “On the weak laws of large numbers for arrays of random variables”, Statist. Probab. Lett., 79:23 (2009), 2405–2414 | DOI | MR | Zbl
[11] Gan S. X., Chen P. Y., “Some limit theorems for sequences of pairwise NQD random variables”, Acta Math. Sci., Ser. B, Engl. Ed., 28:2 (2008), 269–281 | MR | Zbl
[12] Baek J. I., Ko M. H., Kim T. S., “On the complete convergence for weighted sums of dependent random variables under condition of weighted integrability”, J. Korean Math. Soc., 45:4 (2008), 1101–1111 | DOI | MR | Zbl
[13] Ordóñez Cabrera M., Volodin A., “Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability”, J. Math. Anal. Appl., 305:2 (2005), 644–658 | DOI | MR | Zbl
[14] Wu Y. F., Guan M., “Mean convergence theorems and weak laws of large numbers for weighted sums of dependent random variables”, J. Math. Anal. Appl., 377:2 (2011), 613–623 | DOI | MR | Zbl
[15] Chen P. Y., Ordóñez Cabrera M., Volodin A., “${L_1}$-convergence for weighted sums of some dependent random variables”, Stoch. Anal. Appl., 28:6 (2010), 928–936 | DOI | MR | Zbl
[16] Adler A., Rosalsky A., Volodin A., “A mean convergence theorem and weak law for arrays of random elements in martingale type $p$ Banach spaces”, Statist. Probab. Lett., 32:2 (1997), 167–174 | DOI | MR | Zbl
[17] Yang S. C., “Almost sure convergence of weighted sums of mixing sequences”, J. Systems Sci. Math. Sci., 15:3 (1995), 254–265 (in Chinese) | MR | Zbl
[18] Chung K. L., A Course in Probability Theory, Academic Press, Orlando, 2001, 419 pp. | MR | Zbl