Two properties of vectors of quadratic forms of Gaussian random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 214-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_2_a1,
     author = {V. I. Bogachev and E. D. Kosov and I. Nourdin and G. Poly},
     title = {Two properties of vectors of quadratic forms of {Gaussian} random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {214--232},
     year = {2014},
     volume = {59},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - E. D. Kosov
AU  - I. Nourdin
AU  - G. Poly
TI  - Two properties of vectors of quadratic forms of Gaussian random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 214
EP  - 232
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a1/
LA  - ru
ID  - TVP_2014_59_2_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A E. D. Kosov
%A I. Nourdin
%A G. Poly
%T Two properties of vectors of quadratic forms of Gaussian random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 214-232
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a1/
%G ru
%F TVP_2014_59_2_a1
V. I. Bogachev; E. D. Kosov; I. Nourdin; G. Poly. Two properties of vectors of quadratic forms of Gaussian random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 2, pp. 214-232. http://geodesic.mathdoc.fr/item/TVP_2014_59_2_a1/

[1] Kusuoka S., “On the absolute continuity of the law of a system of multiple Wiener integral”, J. Fac. Sci. Univ. Tokyo, 30:1 (1983), 191–198 | MR

[2] Nourdin I., Nualart D., Poly G., “Absolute continuity and convergence of densities for random vectors on Wiener chaos”, Electron. J. Probab., 18:22 (2013), 19 pp. | MR | Zbl

[3] Arcones M., “The class of Gaussian chaos of order two is closed by taking limits in distribution”, Contemp. Math., 234, 1999, 13–19 | DOI | MR | Zbl

[4] Sevastyanov B. A., “Klass predelnykh zakonov raspredeleniya kvadratichnykh form ot normalnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 6:3 (1961), 368–372

[5] Nourdin I., Poly G., “Convergence in law in the second Wiener/Wigner chaos”, Electron. Comm. Probab., 17:36 (2012), 12 pp. | MR

[6] Shigekawa I., “Derivatives of Wiener functionals and absolute continuity of induced measures”, J. Math. Kyoto Univ., 20:2 (1980), 263–289 | MR | Zbl

[7] Bogachev V. I., Gaussian Measures, Amer. Math. Soc., Providence, RI, 1998, 433 pp. | Zbl

[8] Bogachev V. I., Differentiable Measures and the Malliavin Calculus, Amer. Math. Soc., Providence, RI, 2010, 488 pp. | MR | Zbl

[9] Bogachev V. I., “Gaussian measures on infinite dimensional spaces”, Real and Stochastic Analysis: Current Trends, ed. M. M. Rao, World Scientific Publ., Singapore, 2014, 1–83 pp. | MR

[10] Arutyunyan L. M., Yaroslavtsev I. S., “Ob izmerimykh mnogochlenakh na beskonechnomernykh prostranstvakh”, Dokl. RAN, 449:6 (2013), 627–631 | DOI

[11] Yurova E. V., “O nepreryvnykh suzheniyakh izmerimykh lineinykh operatorov”, Dokl. RAN, 443:3 (2012), 300–303 | Zbl

[12] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M., 1949, 264 pp.

[13] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.

[14] Peccati G., Tudor C. A., “Gaussian limits for vector-valued multiple stochastic integrals”, Lecture Notes in Math., 1857, 2005, 247–262 | MR | Zbl

[15] Nourdin I., Peccati G., Normal Approximations with Malliavin Calculus. From Stein's Method to Universality, Cambridge Univ. Press, Cambridge, 2012, 239 pp. | MR | Zbl

[16] Agafontsev B. V., Bogachev V. I., “Asimptoticheskie svoistva mnogochlenov ot gaussovskikh sluchainykh velichin”, Dokl. RAN, 429:1 (2009), 151–154 | MR | Zbl

[17] Nourdin I., Poly G., “Convergence in total variation on Wiener chaos”, Stochastic Process. Appl., 123:2 (2013), 651–674 | DOI | MR | Zbl

[18] Christoph G., Prohorov Yu., Ulyanov V., “Characterization and stability problems for finite quadratic forms”, Asymptotic Methods in Probability and Statistics with Applications (St. Petersburg, 1998), Birkhäuser Boston, Boston, 2001, 39–50 | DOI | MR | Zbl

[19] Prokhorov Yu. V., Kristof G., Ulyanov V. V., “O kharakterizatsionnykh svoistvakh kvadratichnykh form”, Dokl. RAN, 373:2 (2000), 168–170 | MR | Zbl