Exponential inequalities for probability deviations of stochastic integrals over Gaussian integrable processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 150-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_1_a7,
     author = {A. A. Bystrov},
     title = {Exponential inequalities for probability deviations of stochastic integrals over {Gaussian} integrable processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {150--159},
     year = {2014},
     volume = {59},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a7/}
}
TY  - JOUR
AU  - A. A. Bystrov
TI  - Exponential inequalities for probability deviations of stochastic integrals over Gaussian integrable processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 150
EP  - 159
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a7/
LA  - ru
ID  - TVP_2014_59_1_a7
ER  - 
%0 Journal Article
%A A. A. Bystrov
%T Exponential inequalities for probability deviations of stochastic integrals over Gaussian integrable processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 150-159
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a7/
%G ru
%F TVP_2014_59_1_a7
A. A. Bystrov. Exponential inequalities for probability deviations of stochastic integrals over Gaussian integrable processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 150-159. http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a7/

[1] Blum J. R., Hanson D. L., Koopmans L. H., “On the strong law of large numbers for a class of stochastic processes”, Z. Wahrscheinlichkeitstheor. verw. Geb., 2 (1963), 1–11 | DOI | MR | Zbl

[2] Borisov I. S., Bystrov A. A., “Stochastic integrals and asymptotic analysis of canonical von Mises statistics based on dependent observations”, High Dimensional Probability, IMS Lecture Notes Monograph Ser., 51, Inst. Math. Statist., Beachwood, 2006, 1–17 | DOI | MR | Zbl

[3] Dynkin E. B., Mandelbaum A., “Symmetric statistics, Poisson point processes and multiple Wiener integrals”, Ann. Statist., 11:3 (1983), 739–745 | DOI | MR | Zbl

[4] Major P., “Multiple Wiener–Itô integrals”, Lecture Notes in Math., 849, 1981, 1–127 | DOI | MR

[5] Major P., “On a multivariate version of Bernstein's inequality”, Electron. J. Probab., 12 (2007), 966–988 (electronic) | DOI | MR | Zbl

[6] Major P., Estimation of Wiener–Itô integrals and polynomials of independent gaussian random variables, arXiv: 0803.1453[math.PR]

[7] Sen P. K., “Limiting behavior of regular functionals of empirical distributions for stationary $ *$-mixing processes”, Z. Wahrscheinlichkeitstheor. verw. Geb., 25 (1972), 71–82 | DOI | MR | Zbl

[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[9] Borisov I. S., “Ob odnom kriterii markovosti gaussovskikh sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 27:4 (1982), 802–805 | MR | Zbl

[10] Borisov I. S., Bystrov A. A., “Postroenie stokhasticheskogo integrala ot nesluchainoi funktsii bez usloviya ortogonalnosti integriruyuschei mery”, Teoriya veroyatn. i ee primen., 50:1 (2005), 52–80 | DOI | MR

[11] Borisov I. S., Volodko N. V., “Eksponentsialnye neravenstva dlya raspredelenii $ U$- i $ V$- statistik ot zavisimykh nablyudenii”, Matem. trudy, 11:2 (2008), 3–19 | MR | Zbl

[12] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971, 664 pp. | MR

[13] Filippova A. A., “Teorema Mizesa o predelnom povedenii funktsionalov ot empiricheskikh funktsii raspredeleniya i ee statisticheskie primeneniya”, Teoriya veroyatn. i ee primen., 7:1 (1962), 26–60 | MR | Zbl